Miemietz, Vanessa; Turner, Will

Hicas of length $\le 4$.

Doc. Math., J. DMV 15, 177-205 (2010)


Summary: A hica is a highest weight, homogeneous, indecomposable, Calabi-Yau category of dimension 0. A hica has length $l$ if its objects have Loewy length $l$ and smaller. We classify hicas of length $<= 4$, up to equivalence, and study their properties. Over a fixed field $F$, we prove that hicas of length 4 are in one-one correspondence with bipartite graphs. We prove that an algebra $A_\Gamma$ controlling the hica associated to a bipartite graph $\Gamma$ is Koszul, if and only if $\Gamma$ is not a simply laced Dynkin graph, if and only if the quadratic dual of $A_\Gamma$ is Calabi-Yau of dimension 3.

Mathematics Subject Classification

05, 14, 16, 18