Nagel, Enno

$p$-Adic Fourier Theory of Differentiable Functions

Doc. Math. 23, 939-967 (2018)
DOI: 10.25537/dm.2018v23.939-967

Summary

Let $\bold K$ be a finite extension of $\Bbb{Q}_p$ of degree $d$ and $\Cal{O}_{\bold{K}}$ its ring of integers; let $\Bbb{C}_p$ be the completed algebraic closure of $\Bbb{Q}_p$. The Fourier polynomials $P_n:\Cal{O}_{\bold{K}}\to\Bbb{C}_p$ show that the topological algebra of all locally analytic distributions $\mu:\Cal{C}^{\mathrm{la}}(\Cal{O}_{\bold{K}},\Bbb{C}_p)\to\Bbb{C}_p$ is, by $\mu\mapsto\sum\mu(P_n) X^n$, isomorphic to that of all power series in $\Bbb{C}_p[[X]]$ that converge on the open unit disc of $\Bbb{C}_p$. Given a real number $r\geq d$, we determine the power series that correspond under this isomorphism to all distributions $\mu:\Cal{C}^r(\Cal{O}_{\bold{K}},\Bbb{C}_p)\to\Bbb{C}_p$ that extend to all $r$-times differentiable functions (as arisen in the $p$-adic Langlands program): A function $f:\Cal{O}_{\bold{K}}\to\Cal{C}_p$ is $r$-times differentiable if and only if $f(x)=\Sigma a_nP_n(x)$ with $|a_n|n^{r/d}\to 0$ as $n\to\infty$.

Mathematics Subject Classification

11S80, 11S31, 14G22, 12J25, 32P05, 46S10

Keywords/Phrases

Fourier transform, Mahler basis, Amice transform, Lubin-Tate formal group, Taylor polynomials

References

  • 1. Y. Amice, Interpolation $p$-adique, Bull. Soc. Math. France 92 (1964), 117--180. DOI 10.24033/bsmf.1606; zbl 0158.30201; MR0188199.
  • 2. L. Berger and C. Breuil, Sur quelques représentations potentiellement cristallines de $\mathbf{GL}_2(\mathbf{Q}_p)$, Astérisque 330 (2010), 155--211. zbl 1243.11063; MR2642406.
  • 3. L. Berger, Multivariable Lubin-Tate $(\varphi,\Gamma)$-modules and filtered $\varphi$-modules, Math. Res. Lett. 20 (2013), no. 3, 409--428. DOI 10.4310/MRL.2013.v20.n3.a1; zbl 1319.11030; MR3162836; arxiv 1211.4431.
  • 4. K. Bannai and S. Kobayashi, Integral structures on $p$-adic Fourier theory, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 2, 521--550. Conferbreakhttp://aif.cedram.org/item?id=AIF_2016__66_2_521_0. DOI 10.5802/aif.3018; zbl 06644873; MR3477883; arxiv 0804.4338.
  • 5. P. Colmez, Arithmétique de la fonction zêta, La fonction zêta, Ed. Éc. Polytech., Palaiseau, 2003, pp. 37--164. MR1989223.
  • 6. P. Colmez, Le programme de Langlands $p$-adique, European Congress of Mathematics Kraków, 2--7 July, 2012, 2014, pp. 259--284. DOI 10.4171/120-1/15; zbl 1364.11148; MR3469126.
  • 7. M. De Ieso, Espaces de fonctions de classe $C^r$ sur $\mathcal{O}_F$, Indag. Math. (N.S.) 24 (2013), no. 3, 530--556. DOI 10.1016/j.indag.2013.02.006; zbl 1288.46044; MR3064559.
  • 8. J. Fontaine and Y. Ouyang, Theory of p-adic Galois representations, Springer Verlag, 2014, Preprint. https://www.math.u-psud.fr/ fontaine/galoisrep.pdf; https://www.math.u-psud.fr/ fontaine/galoisrep.pdf ---newline---.
  • 9. S. Lang, Cyclotomic fields, Springer-Verlag, New York-Heidelberg, 1978, Graduate Texts in Mathematics, Vol. 59. zbl 0395.12005; MR0485768.
  • 10. J. Lubin and J. Tate, Formal complex multiplication in local fields, Ann. of Math. (2) 81 (1965), 380--387. DOI 10.2307/1970622; zbl 0128.26501; MR0172878.
  • 11. E. Nagel, Fractional non-Archimedean differentiability, Univ. Münster, Mathematisch-Naturwissenschaftliche Fakultät (Diss.), 2011. Conferbreakhttp://nbn-resolving.de/urn:nbn:de:hbz:6-75409405856. zbl 1223.26011.
  • 12. E. Nagel, Fractional $p$-adic differentiability under the Amice transform, Trends in number theory, Contemp. Math., vol. 649, Amer. Math. Soc., Providence, RI, 2015, pp. 185--201. Conferbreakhrefhttp://www.math.jussieu.fr/ nagel/publications/AmiceTransform.pdfsmallhttp://www.math.jussieu.fr/nagel/publications/AmiceTransform.pdf. DOI 10.1090/conm/649/13026; zbl 06607882; MR3415273.
  • 13. E. Nagel, $p$-adic Taylor polynomials, Indag. Math. (N.S.) 27 (2016), no. 3, 643--669. Confer hrefhttp://www.sciencedirect.com/science/article/pii/S0019357715001275smallhttp://www.sciencedirect.com/science/article/pii/S0019357715001275. DOI 10.1016/j.indag.2015.12.003 ; zbl 1351.26047; MR3505986.
  • 14. C. Perez-Garcia and W. H. Schikhof, Locally convex spaces over non-Archimedean valued fields, Cambridge Studies in Advanced Mathematics, vol. 119, Cambridge University Press, Cambridge, 2010. DOI 10.1017/CBO9780511729959; zbl 1193.46001; MR2598517.
  • 15. W. H. Schikhof, Ultrametric calculus, Cambridge Studies in Advanced Mathematics, vol. 4, Cambridge University Press, Cambridge, 1984, An introduction to $p$-adic analysis. zbl 0553.26006; MR791759.
  • 16. P. Schneider, p-adic Representation Theory, November 1999, Britton Lectures at McMaster University. Conferbreakhrefhttp://wwwmath.uni-muenster.de/u/pschnei/publ/lectnotes/hamilton.dvismallhttp://wwwmath.uni-muenster.de/u/pschnei/publ/lectnotes/hamilton.dvi.
  • 17. P. Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. DOI 10.1007/978-3-662-04728-6; zbl 0998.46044; MR1869547.
  • 18. P. Schneider, Rigid character groups, Lubin-Tate theory, and $(\varphi$,$\Gamma)$-modules, September 2013, Conférence de mi-parcours du programme ANR. Confer https://www.youtube.com/watch?v=i10mEfjfMU4. arxiv 1511.01819.
  • 19. P. Schneider and J. Teitelbaum, $p$-adic Fourier theory, Doc. Math. 6 (2001), 447--481 (electronic). https://www.elibm.org/article/10000516; zbl 1028.11069; MR1871671.
  • 20. P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359--380. DOI 10.1007/BF02784538; zbl 1006.46053; MR1900706.

Affiliation

Nagel, Enno
Instituto de Matemática, Universidade Federal de Alagoas, Campus A. C. Simões, Av. Lourival Melo Mota, Cidade Universitaria 57072-970 - Maceió, AL, Brazil

Downloads