Flach, Matthias; Morin, Baptiste

Weil-Étale Cohomology and Zeta-Values of Proper Regular Arithmetic Schemes

Doc. Math. 23, 1425-1560 (2018)
DOI: 10.25537/dm.2018v23.1425-1560

Summary

We give a conjectural description of the vanishing order and leading Taylor coefficient of the Zeta function of a proper, regular arithmetic scheme $\Cal{X}$ at any integer $n$ in terms of Weil-étale cohomology complexes. This extends work of S. Lichtenbaum [Compos. Math. 141, No. 3, 689--702 (2005; Zbl 1073.14024)] and T. Geisser [Math. Ann. 330, No. 4, 665--692 (2004; Zbl 1069.14021)] for $\Cal{X}$ of characteristic $p$, of S. Lichtenbaum [Ann. Math. (2) 170, No. 2, 657--683 (2009; Zbl 1278.14029)] for $\Cal{X}=\mathrm{Spec}(\Cal{O}_F)$ and $n=0$ where $F$ is a number field, and of the second author for arbitrary $\Cal{X}$ and $n=0$ [B. Morin, Duke Math. J. 163, No. 7, 1263--1336 (2014; Zbl 06303878)]. We show that our conjecture is compatible with the Tamagawa number conjecture of S. Bloch and K. Kato [Prog. Math. 86, 333--400 (1990; Zbl 0768.14001)], and J.-M. Fontaine and B. Perrin-Riou [Proc. Symp. Pure Math. 55, 599--706 (1994; Zbl 0821.14013)] if $\Cal{X}$ is smooth over $\mathrm{Spec}(\Cal{O}_F)$, and hence that it holds in cases where the Tamagawa number conjecture is known.

Mathematics Subject Classification

14F20, 14F42, 11G40

Keywords/Phrases

Zeta functions, Zeta-values, Weil-étale cohomology, Arakelov theory

References

  • 1. Artin, M.; Verdier, J.-L., Seminar on Étale Cohomology of Number Fields, Lecture notes prepared in connection with a seminar held at the Woods Hole Summer Institute on Algebraic Geometry, July 6-31, 1964.
  • 2. Beilinson A.; Bernstein, J.; Deligne P., Faisceaux pervers. Analyse et topologie sur les éspaces singuliers, Asterisque, 100, (1982); zbl 0536.14011; MR0751966.
  • 3. Beilinson, A. A., On the crystalline period map, Camb. J. Math, 1, 1, 1-51, (2013); DOI 10.4310/CJM.2013.v1.n1.a1; zbl 1351.14011; MR3272051; arxiv 1111.3316.
  • 4. Benois, D.; Berger, L., Théorie d'Iwasawa des représentations cristallines II, Comment. Math. Helv., 83, 3, 603-677, (2008); DOI 10.4171/CMH/138; zbl 1157.11041; MR2410782.
  • 5. Berthelot, P., Géométrie rigide et cohomologie des variétés algébriques de caractéristique p. Introduction aux cohomologies $p$-adiques (Luminy 1984), Mém. Soc. Math. France (N.S.) No. 23, 3, 7-32, (1986); zbl 0515.14015; MR0865810.
  • 6. Berthelot, P., Finitude et pureté cohomologique en cohomologie rigide, with an appendix by J. A. de Jong, Invent. Math., 128, 329-377, (1997); DOI 10.1007/s002220050143; zbl 0908.14005; MR1440308.
  • 7. Bienenfeld, M., An étale cohomology duality theorem for number fields with a real embedding., Trans. Amer. Math. Soc., 303, 1, 71-96, (1987); DOI 10.2307/2000779; zbl 0629.12006; MR0896008.
  • 8. Bloch, S., Algebraic cycles and higher $K$-theory, Adv. in Math., 61, 267-304, (1986); DOI 10.1016/0001-8708(86)90081-2; zbl 0608.14004; MR0852815.
  • 9. Bloch, S., De Rham cohomology and conductors of curves., Duke Math. J., 54, 2, 295-308, (1987); DOI 10.1215/S0012-7094-87-05417-2; zbl 0632.14018; MR0899399.
  • 10. Bloch, S.; Esnault, H.; Kerz, M., p-adic deformation of algebraic cycle classes., Invent. Math., 195, 3, 673-722, (2014); DOI 10.1215/S0012-7094-87-05417-2; zbl 0632.14018; MR3166216.
  • 11. Bloch, S.; Kato, K., L-functions and Tamagawa numbers of motives. In: The Grothendieck Festschrift I, Progress in Math. 86, 333-400, (1990); zbl 0768.14001.
  • 12. Burgos Gil, J. I., Arithmetic Chow rings and Deligne-Beilinson Cohomology, J. Algebraic Geom., 6, 335-377, (1997); zbl 0922.14002; MR1489119.
  • 13. Burgos Gil, J. I.; Feliu, E., Higher arithmetic Chow groups, Comment. Math. Helv., 87, 521-587, (2012); DOI 10.1093/i; zbl 1255.14020; MRn/rnq066; arxiv 0909.5296.
  • 14. Burns, D.; Greither, C., On the equivariant Tamagawa Number Conjecture for Tate Motives, Invent. Math., 153, 303-359, (2003); DOI 10.1007/s00222-003-0291-x; zbl 1142.11076; MR1992015.
  • 15. Cisinski, D. C.; Deglise, F., Triangulated categories of mixed motives; arxiv 0912.2110.
  • 16. Cisinski, D. C.; Deglise, F., Étale Motives, Compos. Math., 152, 556-666, (2016); DOI 10.1112/S0010437X15007459; zbl 06578150; MR3477640; arxiv 1305.5361.
  • 17. Colmez, P.; Niziol, W., Syntomic complexes and $p$-adic nearby cycles, Invent. Math., 208, 1-108, (2017); DOI 10.1007/s00222-016-0683-3; zbl 1395.14013; MR3621832; arxiv 1505.06471.
  • 18. Deligne, P., La Conjecture de Weil. II, Publ. Math. IHES, 52, 137-252, (1980); DOI 10.1007/BF02684780; zbl 0456.14014; MR0601520.
  • 19. Deligne, P., Les constants des équations fonctionnelles des fonctions L, In:Modular functions of one variable II, Lecture Notes in Math. 349, 501-597, (1973); MR0349635.
  • 20. Deligne, P., Decompositions dans la catégorie dérivée. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Part 1, 115-128, (1994); zbl 0809.18008; MR1265526.
  • 21. Deninger, C., Number theory and dynamical systems on foliated spaces, Jber. d. Dt. Math.-Verein., 103, 79-100, (2001); zbl 1003.11029; MR1873325; arxiv math/0204110.
  • 22. Ertl, V.; Niziol, W., Syntomic cohomology and $p$-adic motivic cohomology; arxiv 1603.01705.
  • 23. Fan, E., On the construction of higher etale regulators, (2015); MR3389076.
  • 24. Flach, M., The equivariant Tamagawa number conjecture: A survey, In: Stark's Conjecture: Recent Work and New Directions, Contemp. Math. 358, (2004); zbl 1070.11025; MR2088713.
  • 25. Flach, M., Cohomology of topological groups with applications to the Weil group, Compositio Math., 144, 3, 633-656, (2008); DOI 10.1112/S0010437X07003338; zbl 1145.18006; MR2422342.
  • 26. Flach, M., On the cyclotomic main conjecture for the prime $2$, J. reine angew. Math., 661, 1-36, (2011); DOI 10.1515/CRELLE.2011.082; zbl 1242.11083; MR2863902.
  • 27. Flach, M.; Morin, B., On the Weil-étale topos of regular arithmetic schemes, Documenta Mathematica, 17, 313-399, (2012); zbl 1288.14011; MR2946826; arxiv 1010.3833; https://www.elibm.org/article/10000239.
  • 28. Fontaine, J. M., Valeurs spéciales des fonctions L des motifs. Séminaire Bourbaki, exposé 751, (Feb. 1992); zbl 0799.14006; MR1206069.
  • 29. Fontaine, J. M., Representationes $p$-adiques semi-stables. Périodes p-adiques, Séminaire de Bures, 1988, Astérisque 223, 113-183, (1994); zbl 0865.14009; MR1293972.
  • 30. Fontaine, J. M., Representationes $l$-adiques potentiellement semi-stables. Périodes p-adiques, Séminaire de Bures, 1988, Astérisque 223, 321-347, (1994); zbl 0873.14020; MR1293977.
  • 31. Fontaine, J.-M.; Perrin-Riou, B., Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Part 1, 599-706, (1994); zbl 0821.14013; MR1265546.
  • 32. Fujiwara, K., Theory of tubular neighborhood in etale topology, Duke Math. J., 80, 1, 15-57, (1995); DOI 10.1215/S0012-7094-95-08002-8; zbl 0872.14014; MR1360610.
  • 33. Gabber, O., Sur la torsion dans la cohomologie l-adique d'une variété., C. R. Acad. Sci. Paris Sér. I Math., 297, 3, 179-182, (1983); zbl 0574.14019; MR0725400.
  • 34. Geisser, T.; Levine, M., The K-theory of fields in characteristic p, Invent. Math., 139, 3, 459-493, (2000); DOI 10.1007/s002220050014; zbl 0957.19003; MR1738056.
  • 35. Geisser, T.; Levine, M., The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine. Angew. Math., 530, 55-103, (2001); DOI 10.1515/crll.2001.006; zbl 1023.14003; MR1807268.
  • 36. Geisser, T., Weil-étale cohomology over finite fields, Math. Ann., 330, 4, 665-692, (2004); DOI 10.1007/s00208-004-0564-8; zbl 1069.14021; MR2102307; arxiv math/0404425.
  • 37. Geisser, T., Motivic Cohomology over Dedekind rings, Math. Z., 248, 4, 773-794, (2004); DOI 10.1007/s00209-004-0680-x; zbl 1062.14025; MR2103541.
  • 38. Geisser, T., Arithmetic cohomology over finite fields and special values of $\zeta $-functions, Duke Math. Jour., 133, 1, 27-57, (2006); DOI 10.1215/S0012-7094-06-13312-4; zbl 1104.14011; MR2219269; arxiv math/0405164.
  • 39. Geisser, T., Duality via cycle complexes, Ann. of Math., 172, 2, 1095-1126, (2010); DOI 10.4007/annals.2010.172.1095; zbl 1215.19001; MR2680487; arxiv math/0608456.
  • 40. Gillet, H.; Soulé, C., Arithmetic intersetion theory, Publ. Math. IHES, 72, 93-174, (1990); DOI 10.1007/BF02699132; zbl 0741.14012; MR1087394.
  • 41. Gillet, H.; Soulé, C., Arithmetic Analogues of the Standard Conjectures. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Part 1, 129-140, (1994); zbl 0820.14007; MR1265527.
  • 42. Goncharov, A., Chow Polylogarithms and Regulators, Math. Res. Lett., 2, 95-112, (1995); DOI 10.4310/; zbl 0836.14005; MRL.1995.v2.n1.a9.
  • 43. Goncharov, A., Polylogarithms, Regulators, and Arakelov motivic complexes, J. Amer. Math. Soc., 18, 1, 1-60, (2005); DOI 10.1090/S0894-0347-04-00472-2; zbl 1104.11036; MR2114816; arxiv math/0207036.
  • 44. Grothendieck, A.; Dieudonné, J., Éléments de Géométrie Algébrique, (1967); zbl 0153.22301.
  • 45. Hoffmann, N.; Spitzweck, M., Homological algebra with locally compact abelian groups, Advances in Math., 212, 504-524, (2007); DOI 10.1016/j.aim.2006.09.019; zbl 1123.22002; MR2329311; arxiv math/0510345.
  • 46. Scholbach, J.; Holmstrom, A., Arakelov motivic cohomology I, J. Algebraic Geom., 24, 719-754, (2015); DOI 10.1090/jag/648; zbl 1357.14036; MR3383602; arxiv 1012.2523.
  • 47. Huber, A.; Kings, G., Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters, Duke Math. Jour., 119, 393-464, (2003); DOI 10.1215/S0012-7094-03-11931-6; zbl 1044.11095; MR2002643; arxiv math/0101071.
  • 48. Illusie, L., Existence de Résolutions Globales. Théorie des Intersections et Théorème de Riemann-Roch (SGA6), Lecture Notes in Mathematics 225, 160-221, (1971); zbl 0241.14002.
  • 49. Illusie, L., Complexe cotangent et déformations. I., Lecture Notes in Mathematics 239, (1971); DOI 10.1007/BFb0059052; zbl 0224.13014; MR0491680.
  • 50. Illusie, L., Complexe cotangent et déformations. II., Lecture Notes in Mathematics 283, (1972); DOI 10.1007/BFb0059573; zbl 0238.13017; MR0491681.
  • 51. Illusie, L., Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. de l'ENS, 12, 4, 501-666, (1979); DOI 10.24033/asens.1374; zbl 0436.14007; MR0565469.
  • 52. Illusie, L., Autour du théorème de monodromie locale. Périodes p-adiques, Séminaire de Bures, 1988, Astérisque 223, 9-57, (1994); zbl 0837.14013; MR1293970.
  • 53. Illusie, L., Frobenius et dégénérescence de Hodge. Introduction à la théorie de Hodge, Panor. Synthèses 3, 113-168, (1996); MR1409820.
  • 54. Kahn, B., Équivalences rationnelle et numérique sur certaines variétés de type abélien sur un corps fini, Ann. Sci. école Norm. Sup. (4), 36, 6, 977-1002, (2003); DOI 10.1016/j.ansens.2003.02.002; zbl 1073.14034; MR2032532.
  • 55. Kato, K.; Saito, S., Global class field theory of arithmetic schemes, Contemp. Math. 51, 255-331, (1986); zbl 0614.14001.
  • 56. Kato, K., On $p$-adic vanishing cycles (application of ideas of Fontaine-Messing). Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, 207-251, (1987); zbl 0645.14009; MR0946241.
  • 57. Kato, K., Semistable reduction and $p$-adic étale cohomology. Périodes p-adiques, Séminaire de Bures, 1988, Astérisque 223, 269-293, (1994); zbl 0847.14009; MR1293975.
  • 58. Kerr, M.; Lewis, J. D.; Müller-Stach, S., The Abel-Jacobi map for higher Chow groups, Compositio, 142, 374-396, (2006); DOI 10.1112/S0010437X05001867; zbl 1123.14006; MR2218900; arxiv math/0409116.
  • 59. Knudsen, F.; Mumford, D., The projectivity of the moduli space of stable curves I: Preliminaries on `det' and `Div', Math. Scand., 39, 19-55, (1976); DOI 10.7146/math.scand.a-11642; zbl 0343.14008; MR0437541.
  • 60. Künnemann, K., Arakelov Chow groups of abelian schemes, arithmetic Fourier transform, and analogues of the standard conjectures of Lefschetz type, Math. Ann., 300, 365-392, (1994); DOI 10.1007/BF01450492; zbl 0808.14020; MR1304428.
  • 61. Künnemann, K., Some remarks on the arithmetic Hodge index conjecture, Compositio Math., 99, 109-128, (1995); zbl 0845.14006; MR1351832.
  • 62. Kurihara, M., A Note on $p$-adic Étale Cohomology, Proc. Japan Acad., Ser. A, 63, (1987); DOI 10.3792/pjaa.63.275; zbl 0647.14006; MR0931263.
  • 63. Levine, M., K-theory and motivic cohomology of schemes; http://www.math.uiuc.edu/K-theory/0336/mot.pdf.
  • 64. Levine, M., Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom., 10, 2, 299-363, (2001); zbl 1077.14509; MR1811558.
  • 65. Lichtenbaum, S., The Weil-étale topology on schemes over finite fields, Compositio Math., 141, 3, 689-702, (2005); DOI 10.1112/S0010437X04001150; zbl 1073.14024; MR2135283.
  • 66. Lichtenbaum, S., The Weil-étale Topology for number rings, Annals of Math., 170, 2, 657-683, (2009); DOI 10.4007/annals.2009.170.657; zbl 1278.14029; MR2552104; arxiv math/0503604.
  • 67. Lichtenbaum, S., Euler characteristics and special values of zeta-functions. Motives and algebraic cycles, Fields Inst. Commun. 56, 249-255, (2009); zbl 1245.14023; MR2562461.
  • 68. Majadas, J., Derived deRham cohomology and cyclic homology, Math. Scand., 79, 176-188, (1996); DOI 10.7146/math.scand.a-12599; zbl 0879.13006; MR1452037.
  • 69. Milne, J. S., Arithmetic duality theorems, Perspectives in Math. 1, (1986); zbl 0613.14019; MR0881804.
  • 70. Milne, J. S., Values of Zeta functions of varieties over finite fields, Amer. J. Math., 108, 2, 297-360, (1986); DOI 10.2307/2374676; zbl 0611.14020; MR0833360.
  • 71. Mokrane, A., La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. Journal, 72, 2, 301-337, (1993); DOI 10.1215/S0012-7094-93-07211-0; zbl 0834.14010; MR1248675.
  • 72. Morin, B., Zeta Functions of regular arithmetic schemes at $s=0$, Duke Math. J., 163, 7, 1263-1336, (2014); DOI 10.1215/00127094-2681387; zbl 06303878; MR3205726; arxiv 1103.6061.
  • 73. Morin, B., Milne's correcting factor and derived de Rham cohomology, Documenta Mathematica, 21, 39-48, (2016); zbl 1346.14060; MR3465107; https://www.elibm.org/article/10000431.
  • 74. Morin, B., Milne's correcting factor and derived de Rham cohomology II, Documenta Mathematica, 22, 1303-1321, (2017); DOI 10.25537/dm.2017v22.1303-1321; zbl 06836581; MR3722562; https://www.elibm.org/article/10010390.
  • 75. Nakkajima, Y., Weight filtration and slope filtration on the rigid cohomology of a variety in characteristic $p>0$, Mem. Soc. Math. Fr., 130-131, (2012); zbl 1303.14032; MR3136733.
  • 76. Nekovář, J.; Niziol, W., Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields, Algebra Number Theory, 10, 8, 1695-1790, (2016); DOI 10.2140/ant.2016.10.1695; zbl 1375.14081; MR3556797; arxiv 1309.7620.
  • 77. Perrin-Riou, B., Fonctions $L$ $p$-adiques des représentations $p$-adiques, Astérisque 229, (1995); zbl 0845.11040; MR1327803.
  • 78. Roby, N., Lois polynomes et lois formelles en théorie des modules., Ann. Sci. École Norm. Sup., 80, 3, 213-348, (1963); DOI 10.24033/asens.1124; zbl 0117.02302; MR0161887.
  • 79. Sato, K., $p$-adic Étale Twists and Arithmetic Duality, Ann. Scient. Éc. Norm. Sup., 40, 4, 519-588, (2007); DOI 10.1016/j.ansens.2007.04.002; zbl 1146.14012; MR2191526; arxiv math/0610426.
  • 80. Sato, K., Logarithmic Hodge-Witt sheaves on normal crossing varieties, Mathematische Zeitschrift, 257, 707-743, (2007); DOI 10.1007/s00209-006-0033-z; zbl 1138.14013; MR2342550.
  • 81. Schneider, P., Introduction to the Beilinson conjectures. Beilinson's Conjectures on special values of $L$-functions, 1-36, (1988); zbl 0673.14007; MR0944989.
  • 82. Schneider, P., $p$-adic points of motives. Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Part 2, 225-249, (1994); zbl 0814.14023; MR1265555.
  • 83. Scholbach, J., Special L-values of geometric motives, Asian Journal of Math., 21, 225-263, (2017); DOI 10.4310/AJM.2017.v21.n2.a2; zbl 06822974; MR3672259; arxiv 1003.1215.
  • 84. Scholbach, J., Arakelov motivic cohomology II, J. Algebraic Geom., 24, 755-786, (2015); DOI 10.1090/jag/647; zbl 1357.14037; MR3383603; arxiv 1205.3890.
  • 85. Serpé, C., Resolution of unbounded complexes in Grothendieck categories, J. Pure Appl. Algebra, 177, 1, 103-112, (2003); DOI 10.1016/S0022-4049(02)00075-0; zbl 1033.18007; MR1948842.
  • 86. Serre, J. P., Local Fields, Graduate Texts in Mathematics 67, (1995); zbl 0423.12016; MR0554237.
  • 87. Soulé, C., Operations en K-theorie algebrique, Canad. Jour. Math., 37, (1985); DOI 10.4153/CJM-1985-029-x; zbl 0575.14015; MR0787114.
  • 88. Spaltenstein, N., Resolutions of unbounded complexes, Compositio Math., 65, 2, 121-154, (1988); zbl 0636.18006; MR0932640.
  • 89. Spitzweck, M., A commutative $P^1$-spectrum representing motivic cohomology over Dedekind domains, preprint 2012; arxiv 1207.4078.
  • 90. Weibel, C., An introduction to homological algebra, Cambridge studies in advanced mathematics 38, (1994); zbl 0797.18001; MR1269324.
  • 91. Wu, Yitao, On the $p$-adic local invariant cycle theorem, Math. Z., 285, 3/4, 1125-1139, (1988); zbl 06705506; arxiv 1511.08323.
  • 92. Zhong, C., Comparison of dualizing complexes, J. Reine Angew. Math., 695, 1-39, (2014); DOI 10.1515/crelle-2012-0088; zbl 1321.19004; MR3276153; arxiv 1011.2826.

Affiliation

Flach, Matthias
Department of Mathematics, Caltech Pasadena, CA 91125, USA
Morin, Baptiste
CNRS, IMB, Université de Bordeaux 351, cours de la Libération, F 33405 Talence cedex, France

Downloads