We introduce coherent cohomology theories $\underline{{h}}$ and prove that if such a theory is moreover generically constant then the Rost nilpotence principle holds for projective homogeneous varieties in the category of $\underline{{h}}$-motives. Examples of such theories are algebraic cobordism and its descendants the free theories.
1. P. Brosnan, A short proof of Rost nilpotence via refined correspondences, Doc. Math. 8 (2003), 69--78. https://www.elibm.org/article/10000569; zbl 1044.11017; MR2029161.
2. P. Brosnan, On motivic decompositions arising from the method of Bialynicki-Birula, Invent. Math. 161 (2005), 91--111. DOI 10.1007/s00222-004-0419-7; zbl 1085.14045; MR2178658; arxiv math/0407305.
3. V. Chernousov, A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem, Transform. Groups 11 (2006), 371-386. DOI 10.1007/s00031-005-1114-5; zbl 1111.14009; MR2264459.
4. V. Chernousov, S. Gille, A. Merkurjev, Motivic decomposition of isotropic projective homogeneous varieties, Duke Math. J. 126 (2005), 137--159. DOI 10.1215/S0012-7094-04-12614-4; zbl 1086.14041; MR2110630.
5. R. Elman, N. Karpenko, A. Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society, Providence, RI, 2008. zbl 1165.11042; MR2427530.
7. S. Gille, The Rost nilpotence theorem for geometrically rational surfaces, Invent. Math. 181 (2010), 1--19. DOI 10.1007/s00222-010-0240-4; zbl 1193.14050; MR2651379.
8. S. Gille, On Chow motives of surfaces, J. reine angew. Math. 686 (2014), 149--166. DOI 10.1515/crelle-2012-0029; zbl 1291.14011; MR3176602.
9. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203; ibid. (2) 79 (1964), 205-326. DOI 10.2307/1970486; zbl 0122.38603; MR0199184.
10. M. Levine, F. Morel, Algebraic Cobordism, Springer-Verlag, Berlin, 2007. DOI 10.1007/3-540-36824-8; zbl 1188.14015; MR2286826; arxiv math/0304206.
11. M. Levine, R. Pandharipande, Algebraic cobordism revisited, Invent. Math. 176 (2009), 63--130. DOI 10.1007/s00222-008-0160-8; zbl 1210.14025; MR2485880; arxiv math/0605196.
12. Y. Manin, Correspondences, motifs and monodial transformations, (in Russian), Mat. Sb. (N. S.) 77 (1968), 475--507. zbl 0199.24803; MR0258836.
13. M. Rost, The motive of a Pfister form, Preprint 1998, available at https://www.math.uni-bielefeld.de/ rost/motive.html; https://www.math.uni-bielefeld.de/ rost/motive.html ---newline---.
14. P. Sechin, Chern Classes from Algebraic Morava K-Theories to Chow Groups, Int. Math. Res. Not. 2018, no. 15, 4675--4721. MR3842381; arxiv 1605.04444.
15. P. Sechin, Chern classes from Morava K-theories to $p^{n}$-typical oriented theories, Preprint 2018. arxiv 1805.09050.
16. A. Vishik, Integral Motives of Quadrics, MPIM-preprint, 1998 (13), 1-82; available at www.mpim-bonn.mpg.de/node/263. MR2695910.
17. A. Vishik, Stable and Unstable Operations in Algebraic Cobordism, Ann. Sci. de l'Ecole Norm. Sup., to appear. arxiv 1209.5793.
18. A. Vishik, N. Yagita, Algebraic cobordisms of a Pfister quadric, J. London Math. Soc. 76 (2007), 586--604. DOI 10.1112/jlms/jdm056; zbl 1143.14016; MR2377113.
19. A. Vishik, K. Zainoulline, Motivic splitting lemma, Doc. Math. 13 (2008), 81--96. https://www.elibm.org/article/10000120; zbl 1132.14303; MR2393083.
20. V. Voevodsky, Motivic cohomology with $\mathbb{Z}/2$-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59--104. DOI 10.1007/s10240-003-0010-6; zbl 1057.14028; MR2031199.
Affiliation
Gille, Stefan
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G 2G1, Canada
Vishik, Alexander
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom