Raptis, Georgios; Strunk, Florian

Model Topoi and Motivic Homotopy Theory

Doc. Math. 23, 1757-1797 (2018)
DOI: 10.25537/dm.2018v23.1757-1797

Summary

Given a small simplicial category $\mathcal{C}$ whose underlying ordinary category is equipped with a Grothendieck topology $\tau$, we construct a model structure on the category of simplicially enriched presheaves on $\mathcal{C}$ where the weak equivalences are the local weak equivalences of the underlying (non-enriched) simplicial presheaves. We show that this model category is a $t$-complete model topos and describe the Grothendieck topology $[\tau]$ on the homotopy category of $\mathcal{C}$ that corresponds to this model topos. After we first review a proof showing that the motivic homotopy theory is not a model topos, we specialize this construction to the category of smooth schemes of finite type, which is simplicially enriched using the standard algebraic cosimplicial object, and compare the result with the motivic homotopy theory. We also collect some partial positive results on the exactness properties of the motivic localization functor.

Mathematics Subject Classification

14F42, 18B25, 55U35

Keywords/Phrases

motivic homotopy theory, topoi

References

  • 1. J. Adámek, J. Rosický, Locally presentable and accessible categories. London Mathematical Society Lecture Note Series, 189. Cambridge University Press, Cambridge, 1994. zbl 0795.18007; MR1294136.
  • 2. M. Artin, A. Grothendieck, J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Séminaire de Géométrie Algébrique du Bois-Marie 1963--1964 (SGA 4). Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, Vol. 269. Springer-Verlag, Berlin-New York, 1972. DOI 10.1007/BFb0081551; zbl 0234.00007; MR0463174.
  • 3. A. Asok, M. Hoyois, M. Wendt, Affine representability results in $\mathbb{A}^1$-homotopy theory, I: vector bundles, Duke Math. J. 166 (2017), no. 10, 1923--1953. DOI 10.1215/00127094-0000014X; zbl 06773295; MR3679884; arxiv 1506.07093.
  • 4. A. Asok, M. Hoyois, M. Wendt,, Affine representability results in $\mathbb{A}^1$-homotopy theory: II: Principal bundles and homogeneous spaces, Geom. Topol. 22 (2018), no. 2, 1181--1225. DOI 10.2140/gt.2018.22.1181; zbl 06828607; MR3748687.
  • 5. A. Asok, F. Morel, Smooth varieties up to $\mathbb{A}^1$-homotopy and algebraic $h$-cobordisms, Adv. Math. 227 (2011), no. 5, 1990--2058. DOI 10.1016/j.aim.2011.04.009; zbl 1255.14018; MR2803793; arxiv 0810.0324.
  • 6. C. Balwe, A. Hogadi, A. Sawant, $\mathbb{A}^1$-connected components of schemes, Adv. Math. 282 (2015), 335--361. DOI 10.1016/j.aim.2015.07.003; zbl 1332.14025; MR3374529; arxiv 1312.6388.
  • 7. B. A. Blander, Local projective model structures on simplicial presheaves, $K$-Theory 24 (2001), no. 3, 283--301. DOI 10.1023/A:1013302313123; zbl 1073.14517; MR1876801.
  • 8. U. Bunke, T. Nikolaus, M. Völkl, Differential cohomology theories as sheaves of spectra, J. Homotopy Relat. Struct. 11 (2016), no. 1, 1--66. DOI 10.1007/s40062-014-0092-5; zbl 1341.57020; MR3462099; arxiv 1311.3188.
  • 9. W. Chachólski, J. Scherer,Homotopy theory of diagrams, Mem. Amer. Math. Soc. 736 (2002). zbl 1006.18015; MR1879153.
  • 10. U. Choudhury, On a conjecture of Morel, hrefhttps://arxiv.org/abs/1209.0484arXiv:1209.0484, preprint, 2012.
  • 11. J.-P. Doeraene, Homotopy pull backs, homotopy push outs and joins, Bull. Belg. Math. Soc. Simon Stevin 5 (1998), no. 1, 15--37. zbl 0918.55004; MR1610726.
  • 12. D. Dugger, S. Hollander, D. C. Isaksen, Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 1, 9--51. DOI 10.1017/S0305004103007175; zbl 1045.55007; MR2034012; arxiv math/0205027.
  • 13. D. Dugger, Universal homotopy theories, Adv. Math. 164 (2001), no. 1, 144--176. DOI 10.1006/aima.2001.2014; zbl 1009.55011; MR1870515.
  • 14. D. Dugger, Combinatorial model categories have presentations, Adv. Math. 164 (2001), no. 1, 177--201. DOI 10.1006/aima.2001.2015; 1001.18001; MR1870516; arxiv math/0007068.
  • 15. D. Gepner, J. Kock, Univalence in locally cartesian closed $\infty$-categories, Forum Math. 29 (2017), no. 3, 617--652. DOI 10.1515/forum-2015-0228; zbl 1376.55018; MR3641669; arxiv 1208.1749.
  • 16. P. Herrmann, F. Strunk, Enriched simplicial presheaves and the motivic homotopy category, J. Pure Appl. Algebra 215 (2011), no. 7, 1663--1668. DOI 10.1016/j.jpaa.2010.10.002; zbl 1221.14023; MR2771636; arxiv 1007.3153.
  • 17. P. S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs Vol. 99, American Mathematical Society, Providence, RI, 2003. zbl 1017.55001; MR1944041.
  • 18. J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35--87. DOI 10.1016/0022-4049(87)90100-9; zbl 0624.18007; MR0906403.
  • 19. J. F. Jardine, Boolean localization, in practice, Doc. Math. 1 (1996), 245--275. https://www.elibm.org/article/10000031; zbl 0858.55018; MR1405671.
  • 20. J. F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000), 445--553. https://www.elibm.org/article/10000497; zbl 0969.19004; MR1787949.
  • 21. P. T. Johnstone, Sketches of an elephant: a Topos theory compendium, Oxford logic guides Vol. 43, Oxford Univ. Press, New York, NY, 2002. zbl 1071.18001; MR1953060.
  • 22. J. Lurie, Higher topos theory, online version (version dated April 2017) available at hrefhttp://www.math.harvard.edu/ lurie/www.math.harvard.edu/lurie, 2017.
  • 23. M. Mather, Pull-backs in homotopy theory, Canad. J. Math. 28 (1976), no. 2, 225--263. DOI 10.4153/CJM-1976-029-0; zbl 0351.55005; MR0402694.
  • 24. F. Morel, V. Voevodsky, $\mathbb{A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45--143. DOI 10.1007/BF02698831; zbl 0983.14007; MR1813224.
  • 25. F. Morel, $\mathbb{A}^1$-algebraic topology over a field, Lecture Notes in Mathematics Vol. 2052, Springer, Heidelberg, 2012. DOI 10.1007/978-3-642-29514-0; zbl 1263.14003; MR2934577.
  • 26. G. Raptis, J. Rosický, The accessibility rank of weak equivalences, Theory Appl. Categ. 30 (2015), no. 19, 687--703. zbl 1320.55019; MR3356340; arxiv 1403.3042.
  • 27. G. Raptis, J. Rosický, Small presentations of model categories and Vopěnka's principle, Homology Homotopy Appl. 20, no. 1 (2018), 303--328. DOI 10.4310/HHA.2018.v20.n1.a18; zbl 1388.18004; MR3775362; arxiv 1703.08094.
  • 28. G. Raptis, On a conjecture by J. H. Smith, Theory Appl. Categ. 24 (2010), no. 5, 114--116. zbl 1223.55011; MR2610179.
  • 29. G. Raptis, Simplicial presheaves of coalgebras, Algebr. Geom. Topol. 13 (2013), no. 4, 1967--2000. DOI 10.2140/agt.2013.13.1967; zbl 1298.18009; MR3073905; arxiv 1103.2677.
  • 30. C. Rezk, Fibrations and homotopy colimits of simplicial sheaves, hrefhttps://arxiv.org/abs/math/9811038arXiv:math/9811038, preprint, 1998.
  • 31. C. Rezk, Toposes and homotopy toposes, hrefhttp://www.math.uiuc.edu/ rezk/homotopy-topos-sketch.pdfhttp://www.math.uiuc.edu/$\sim$rezk/homotopy-topos-sketch.pdf, preprint, 2010.
  • 32. C. Rezk, When are homotopy colimits compatible with homotopy base change?, hrefhttp://www.math.uiuc.edu/ rezk/i-hate-the-pi-star-kan-condition.pdfhttp://www.math.uiuc.edu/$\sim$rezk/i-hate-the-pi-star-kan-condition.pdf, preprint, 2014.
  • 33. M. Spitzweck, P. A. Østvær, Motivic twisted $K$-theory, Algebr. Geom. Topol. 12 (2012), no. 1, 565--599. DOI 10.2140/agt.2012.12.565; zbl 1282.14040; MR2916287; arxiv 1008.4915.
  • 34. B. Toën, G. Vezzosi, Homotopical algebraic geometry. I. Topos theory, Adv. Math. 193 (2005), no. 2, 257--372. DOI 10.1016/j.aim.2004.05.004; zbl 1120.14012; MR2137288; arxiv math/0207028.
  • 35. V. Voevodsky, Homology of schemes, Selecta Math. (N.S.) 2 (1996), no. 1, 111--153. zbl 0871.14016, MR1403354; arxiv 10.1007/BF01587941.
  • 36. V. Voevodsky, Unstable motivic homotopy categories in Nisnevich and cdh-topologies, J. Pure Appl. Algebra 214 (2010), no. 8, 1399--1406. DOI 10.1016/j.jpaa.2009.11.005; zbl 1187.14025; MR2593671; arxiv 0805.4576.

Affiliation

Raptis, Georgios
Universität Regensburg, Fakultät für Mathematik, 93040 Regensburg, Germany
Strunk, Florian
Universität Regensburg, Fakultät für Mathematik, 93040 Regensburg, Germany

Downloads