Schreyer, Frank-Olaf; Tanturri, Fabio

Matrix Factorizations and Curves in $\mathbb{P}^4$

Doc. Math. 23, 1895-1924 (2018)
DOI: 10.25537/dm.2018v23.1895-1924

Summary

Let $C$ be a curve in $\mathbb{P}^4$ and $X$ be a hypersurface containing it. We show how it is possible to construct a matrix factorization on $X$ from the pair $(C,X)$ and, conversely, how a matrix factorization on $X$ leads to curves lying on $X$. We use this correspondence to prove the unirationality of the Hurwitz space $\mathcal{H}_{12,8}$ and the uniruledness of the Brill-Noether space $\mathcal{W}^1_{13,9}$. Several unirational families of curves of genus $16 \leq g \leq 20$ in $\mathbb{P}^4$ are also exhibited.

Mathematics Subject Classification

14H10, 14M20, 14Q05, 13D02

Keywords/Phrases

matrix factorization, moduli of curves, unirationality, Hurwitz space

References

  • 1. Enrico Arbarello and Maurizio Cornalba. Footnotes to a paper of Beniamino Segre: "On the modules of polygonal curves and on a complement to the Riemann existence theorem" (Italian) [Math. Ann. 100 (1928), 537--551; Jbuch 54, 685]. Math. Ann., 256(3):341--362, 1981. The number of $g{1}{d}$'s on a general $d$-gonal curve, and the unirationality of the Hurwitz spaces of $4$-gonal and $5$-gonal curves. DOI 10.1007/BF01679702; zbl 0454.14023; MR0626954.
  • 2. Enrico Arbarello, Maurizio Cornalba, Phillip A. Griffiths, and Joe Harris. Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985. zbl 0559.14017; MR0770932.
  • 3. James Alexander. Surfaces rationnelles non-spéciales dans $P^4$. Math. Z., 200(1):87--110, 1988. DOI 10.1007/BF01161747; zbl 0702.14031; MR0972397.
  • 4. Alf Bjørn Aure and Kristian Ranestad. The smooth surfaces of degree $9$ in $P^4$. In Complex projective geometry (Trieste, 1989/Bergen, 1989), volume 179 of London Math. Soc. Lecture Note Ser., pages 32--46. Cambridge Univ. Press, Cambridge, 1992. zbl 0768.14017; MR1201373.
  • 5. David A. Buchsbaum and David Eisenbud. Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$. Amer. J. Math., 99(3):447--485, 1977. DOI 10.2307/2373926; zbl 0373.13006; MR0453723.
  • 6. Gilberto Bini, Claudio Fontanari, and Filippo Viviani. On the birational geometry of the universal Picard variety. Int. Math. Res. Not. IMRN, (4):740--780, 2012. DOI 10.1093/imrn/rnr045; zbl 1246.14038; MR2889156; arxiv 1006.0722.
  • 7. Christian Bopp. Macaulay2 supporting code for the master's thesis "Syzygies of $k$-gonal canonical curves", 2013. Available at http://www.math.uni-sb.de/ag-schreyer/index.php/people/researchers/75-christian-bopp.
  • 8. Christian Bopp. Syzygies of $k$-gonal canonical curves. Master's thesis, Saarland University, Saarbrücken, Germany, 2013.
  • 9. Andrea Bruno and Alessandro Verra. $M_{15}$ is rationally connected. In Projective varieties with unexpected properties, pages 51--65. Walter de Gruyter GmbH & Co. KG, Berlin, 2005. zbl 1118.14031; MR2202246; arxiv math/0501455.
  • 10. Marta Casanellas and Robin Hartshorne. Gorenstein biliaison and ACM sheaves. J. Algebra, 278(1):314--341, 2004. DOI 10.1016/j.jalgebra.2003.11.013; zbl 1057.14062; MR2068080; arxiv math/0304447.
  • 11. Sebastian Casalaina-Martin, Jesse Leo Kass, and Filippo Viviani. The singularities and birational geometry of the compactified universal Jacobian. Algebr. Geom., 4(3):353--393, 2017. DOI 10.14231/AG-2017-020; zbl 1369.14017; MR3652085; arxiv 1408.3494.
  • 12. Mei-Chu Chang and Ziv Ran. Unirationality of the moduli spaces of curves of genus $11$, $13$ (and $12$). Invent. Math., 76(1):41--54, 1984. DOI 10.1007/BF01388490; zbl 0541.14025; MR0739623.
  • 13. Mei-Chu Chang and Ziv Ran. The Kodaira dimension of the moduli space of curves of genus $15$. J. Differential Geom., 24(2):205--220, 1986. DOI 10.4310/jdg/1214440435; zbl 0649.14015; MR0862048.
  • 14. Mei-Chu Chang and Ziv Ran. On the slope and Kodaira dimension of $\overline M_g$ for small $g$. J. Differential Geom., 34(1):267--274, 1991. DOI 10.4310/jdg/1214447001; zbl 0780.14014; MR1114463.
  • 15. Wolfram Decker, Lawrence Ein, and Frank-Olaf Schreyer. Construction of surfaces in $P}_4$. J. Algebraic Geom., 2(2):185--237, 1993. zbl 0795.14019; MR1203684.
  • 16. Hamid Damadi and Frank-Olaf Schreyer. Unirationality of the Hurwitz space $H_{9,8}$. Arch. Math. (Basel), 109(6):511--519, 2017. DOI 10.1007/s00013-017-1095-3; zbl 1375.14098; MR3717209.
  • 17. David Eisenbud and Joe Harris. The Kodaira dimension of the moduli space of curves of genus $\geq 23$. Invent. Math., 90(2):359--387, 1987. DOI 10.1007/BF01388710; zbl 0631.14023; MR0910206.
  • 18. David Eisenbud. Homological algebra on a complete intersection, with an application to group representations. Trans. Amer. Math. Soc., 260(1):35--64, 1980. DOI 10.2307/1999875; zbl 0444.13006; MR0570778.
  • 19. David Eisenbud. Commutative algebra with a view toward algebraic geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. zbl 0819.13001; MR1322960.
  • 20. Gavril Farkas. The geometry of the moduli space of curves of genus 23. Math. Ann., 318(1):43--65, 2000. DOI 10.1007/s002080000108; zbl 0992.14006; MR1785575; arxiv math/9907013.
  • 21. Gavril Farkas. Birational aspects of the geometry of $\overline{M}_g$. In Surveys in differential geometry. Vol. XIV. Geometry of Riemann surfaces and their moduli spaces, volume 14 of Surv. Differ. Geom., pages 57--110. Int. Press, Somerville, MA, 2009. zbl 1215.14024; MR2655323; arxiv 0810.0702.
  • 22. Gavril Farkas and Alessandro Verra. The universal theta divisor over the moduli space of curves. J. Math. Pures Appl. (9), 100(4):591--605, 2013. DOI 10.1016/j.matpur.2013.01.014; zbl 1327.14131; MR3102167; arxiv 1009.0184.
  • 23. Florian Geiß. The unirationality of Hurwitz spaces of 6-gonal curves of small genus. Doc. Math., 17:627--640, 2012. https://www.elibm.org/article/10000230; zbl 1266.14019; MR3007673.
  • 24. Florian Geiß. The unirationality of Hurwitz spaces of hexagonal curves of small genus. PhD thesis, Saarland University, Saarbrücken, Germany, 2013.
  • 25. Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
  • 26. Joe Harris and David Mumford. On the Kodaira dimension of the moduli space of curves. Invent. Math., 67(1):23--88, 1982. With an appendix by William Fulton. DOI 10.1007/BF01393371; zbl 0506.14016; MR0664324.
  • 27. Hanieh Keneshlou and Fabio Tanturri. The unirationality of the Hurwitz schemes ${H}_{10,8}$ and ${H}_{13,7}$. Accepted for publication in Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.. arxiv 1712.04899.
  • 28. Shigeru Mukai. Curves and symmetric spaces. I. Amer. J. Math., 117(6):1627--1644, 1995. DOI 10.2307/2375032; zbl 0871.14025; MR1363081.
  • 29. Jan Müller. Matrix-Faktorisierungen und unirationale Familien von Kurven vom Geschlecht 16 in ${\mathbb{P}^4$. Master's thesis, Saarland University, Saarbrücken, Germany, 2014.
  • 30. Karl Petri. Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen. Math. Ann., 88(3-4):242--289, 1923. JFM 49.0264.02; MR1512130.
  • 31. Frank-Olaf Schreyer. Syzygies of canonical curves and special linear series. Math. Ann., 275(1):105--137, 1986. DOI 10.1007/BF01458587; zbl 0578.14002; MR0849058.
  • 32. Frank-Olaf Schreyer. Computer aided unirationality proofs of moduli spaces. In Handbook of moduli. Vol. III, volume 26 of Adv. Lect. Math. (ALM), pages 257--280. Int. Press, Somerville, MA, 2013. zbl 1322.14021; MR3135439; arxiv 1109.4600.
  • 33. Frank-Olaf Schreyer. Matrix factorizations and families of curves of genus 15. Algebr. Geom., 2(4):489--507, 2015. DOI 10.14231/AG-2015-021; zbl 1342.14057; MR3403238; arxiv 1311.6962.
  • 34. Beniamino Segre. Sui moduli delle curve poligonali, e sopra un complemento al teorema di esistenza di Reimann. Math. Ann., 100(1):537--551, 1928. MR1512501.
  • 35. Edoardo Sernesi. Unirationality of the variety of moduli of curves of genus twelve. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8(3):405--439, 1981. zbl 0475.14024; MR0634856.
  • 36. Francesco Severi. Vorlesungen über algebraische Geometrie: Geometrie auf einer Kurve, Riemannsche Flächen, Abelsche Integrale. Berechtigte Deutsche Übersetzung von Eugen Löffler. Mit einem Einführungswort von A. Brill. Begleitwort zum Neudruck von Beniamino Segre. Bibliotheca Mathematica Teubneriana, Band 32. Johnson Reprint Corp., New York-London, 1968. MR0245574.
  • 37. Jack Shamash. The Poincaré series of a local ring. J. Algebra, 12:453--470, 1969. DOI 10.1016/0021-8693(69)90023-4; zbl 0189.04004; MR0241411.
  • 38. Frank-Olaf Schreyer and Fabio Tanturri. MatFacCurvesP4, Macaulay2 supporting package for the paper "Matrix factorizations and curves in $\mathbb{P}^4$", 2016. Available at https://www.math.uni-sb.de/ag-schreyer/index.php/computeralgebra.
  • 39. Alessandro Verra. The unirationality of the moduli spaces of curves of genus 14 or lower. Compos. Math., 141(6):1425--1444, 2005. DOI 10.1112/S0010437X05001685; zbl 1095.14024; MR2188443; arxiv math/0402032.

Affiliation

Schreyer, Frank-Olaf
Mathematik und Informatik, Universität des Saarlandes, Campus E2.4, D-66123 Saarbrücken, Germany
Tanturri, Fabio
Laboratoire Paul Painlevé, UMR CNRS 8524, UFR de Mathématiques, Université de Lille, 59655 Villeneuve d'Ascq CEDEX, France

Downloads