Webster, Ben

Weighted Khovanov-Lauda-Rouquier Algebras

Doc. Math. 24, 209-250 (2019)
DOI: 10.25537/dm.2019v24.209-250

Summary

In this paper, we define a generalization of Khovanov-Lauda-Rouquier algebras which we call \textit{weighted Khovanov-Lauda-Rouquier algebras}. We show that these algebras carry many of the same structures as the original Khovanov-Lauda-Rouquier algebras, including induction and restriction functors which induce a twisted bialgebra structure on their Grothendieck groups. We also define natural \textit{steadied quotients} of these algebras, which in an important special cases give categorical actions of an associated Lie algebra. These include the algebras categorifying tensor products and Fock spaces defined by the author and \textit{C. Stroppel} [\textit{B. Webster}, Mem. Am. Math. Soc. 1191, iii-vi, 146 p. (2017; Zbl 07000045), p. 141, and \textit{C. Stroppel} and \textit{B. Webster}, ``Quiver Schur algebras and \(q\)-Fock space'', Preprint, \url{arxiv 1110.1115}]. For symmetric Cartan matrices, weighted KLR algebras also have a natural geometric interpretation as convolution algebras, generalizing that for the original KLR algebras by \textit{M. Varagnolo} and \textit{E. Vasserot} [J. Reine Angew. Math. 659, 67--100 (2011; Zbl 1229.17019)]; this result has positivity consequences important in the theory of crystal bases. In this case, we can also relate the Grothendieck group and its bialgebra structure to the Hall algebra of the associated quiver.

Mathematics Subject Classification

16T05, 16D90, 17B37, 20G43, 18A99

Keywords/Phrases

categorification, quivers, Khovanov-Lauda-Rouquier algebras, Schur algebras, Hall algebras

References

  • 1. Alexander A. Beilinson, Joseph Bernstein, and Pierre Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171. zbl 0536.14011; MR0751966.
  • 2. Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston Inc., Boston, MA, 1997. zbl 0879.22001; MR1433132.
  • 3. Sabin Cautis and Aaron D. Lauda, Implicit structure in 2-representations of quantum groups, Selecta Math. (N.S.) 21 (2015), no. 1, 201-244. DOI 10.1007/s00029-014-0162-x; zbl 1370.17017; MR3300416; arxiv 1111.1431.
  • 4. Daniel Juteau, Carl Mautner, and Geordie Williamson, Parity sheaves, J. Amer. Math. Soc. 27 (2014), no. 4, 1169-1212. DOI 10.1090/S0894-0347-2014-00804-3; zbl 1344.14017; MR3230821; arxiv 0906.2994.
  • 5. Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309-347. DOI 10.1090/S1088-4165-09-00346-X; zbl 1188.81117; MR2525917; arxiv 0803.4121.
  • 6. Mikhail Khovanov and Aaron D. Lauda, A categorification of quantum $\mathfrak sl(n)$, Quantum Topol. 1 (2010), no. 1, 1-92. DOI 10.4171/QT/1; zbl 1206.17015; MR2628852; arxiv 0807.3250.
  • 7. Gérard Laumon, Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. (1987), no. 65, 131-210. DOI 10.1007/BF02698937; zbl 0641.14009; MR0908218.
  • 8. Yiqiang Li, Tensor product varieties, perverse sheaves, and stability conditions, Selecta Math. (N.S.) 20 (2014), no. 2, 359-401. DOI 10.1007/s00029-013-0121-y; zbl 1343.17011; MR3177922; arxiv 1109.4578.
  • 9. George Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365-421. DOI 10.2307/2939279; zbl 0738.17011; MR1088333.
  • 10. Ruslan Maksimau, Canonical basis, KLR algebras and parity sheaves, J. Algebra 422 (2015), 563-610. DOI 10.1016/j.jalgebra.2014.08.052; zbl 1387.17030; MR3272091; arxiv 1301.6261.
  • 11. Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365-416. DOI 10.1215/S0012-7094-94-07613-8; zbl 0826.17026; MR1302318.
  • 12. Claus~Michael Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), no. 3, 583-591. DOI 10.1007/BF01231516; zbl 0735.16009; MR1062796.
  • 13. Raphael Rouquier, 2-Kac-Moody algebras (2008). arxiv 0812.5023.
  • 14. Olivier Schiffmann, Lectures on Hall algebras (2006). arxiv math/0611617.
  • 15. Catharina Stroppel and Ben Webster, Quiver Schur algebras and $q$-Fock space (2011). arxiv 1110.1115.
  • 16. Michela Varagnolo and Eric Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), no. 2, 267-297. DOI 10.1215/S0012-7094-99-10010-X; zbl 0962.17006; MR1722955; arxiv math/9803023.
  • 17. Michela Varagnolo and Eric Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67-100. DOI 10.1515/CRELLE.2011.068; zbl 1229.17019; MR2837011; arxiv 0901.3992.
  • 18. Christopher D. Walker, Hall algebras as Hopf objects (2010). arxiv 1011.5446.
  • 19. Ben Webster, On graded presentations of Hecke algebras and their generalizations (2013). arxiv 1305.0599.
  • 20. Ben Webster, Canonical bases and higher representation theory, Compos. Math. 151 (2015), no. 1, 121-166. DOI 10.1112/S0010437X1400760X; zbl 1393.17029; MR3305310; arxiv 1209.0051.
  • 21. Ben Webster, Knot invariants and higher representation theory, Mem. Amer. Math. Soc. 250 (2017), no. 1191, 141 pp. DOI 10.1090/memo/1191; zbl 07000045; MR3709726; arxiv 1309.3796.
  • 22. Ben Webster, On generalized category $\mathcal{O}$ for a quiver variety, Mathematische Annalen 368 (2017), no. 1, 483-536. DOI 10.1007/s00208-016-1438-6; zbl 06726660; MR3651581; arxiv 1409.4461.
  • 23. Ben Webster, Rouquier's conjecture and diagrammatic algebra, Forum Math. Sigma 5 (2017), e27, 71 pp. DOI 10.1017/fms.2017.17; zbl 06815858; MR3732238; arxiv 1306.0074.
  • 24. Ben Webster, A categorical action on quantized quiver varieties, Math. Z. (2018). arxiv 1208.5957.
  • 25. Geordie Williamson, On an analogue of the James conjecture, Represent. Theory 18 (2014), 15-27. DOI 10.1090/S1088-4165-2014-00447-3; zbl 1316.20002; MR3163410; arxiv 1212.0794.
  • 26. Jie Xiao, Drinfeld double and Ringel-Green theory of Hall algebras, J. Algebra 190 (1997), no. 1, 100-144. DOI 10.1006/jabr.1996.6887; zbl 0874.16026; MR1442148.

Affiliation

Webster, Ben
Department of Pure Mathematics, University of Waterloo \& Perimeter Institute for Theoretical Physics, Waterloo, ON, Canad

Downloads