Diverio, Simone; Fontanari, Claudio; Martinelli, Diletta

Rational Curves on Fibered Calabi-Yau Manifolds

Doc. Math. 24, 663-675 (2019)
DOI: 10.25537/dm.2019v24.663-675
Communicated by Gavril Farkas


We show that a smooth projective complex manifold of dimension greater than two endowed with an elliptic fiber space structure and with finite fundamental group always contains a rational curve, provided its canonical bundle is relatively trivial. As an application of this result, we prove that any Calabi-Yau manifold that admits a fibration onto a curve whose general fiber is an abelian variety always contains a rational curve.

Mathematics Subject Classification

14J32, 32Q55, 14E30


elliptic fiber space, Calabi-Yau manifold, fibration, rational curve, rational multi-section, canonical bundle formula


  • 1. W.P. Barth, K. Hulek, C.A.M. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, second edition, 2004. zbl 1036.14016.
  • 2. F. Campana. Orbifolds, special varieties and classification theory. Annales de l'Institut Fourier, (54):499-630, 2004. DOI 10.5802/aif.2027; zbl 1062.14014; MR2097416.
  • 3. P. Deligne. Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst. Hautes Études Sci. Publ. Math., (35):259-278, 1968. DOI 10.1007/BF02698925; zbl 0159.22501; MR0244265.
  • 4. J.-P. Demailly. Multiplier ideal sheaves and analytic methods in algebraic geometry. In School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), volume 6 of ICTP Lect. Notes, 1-148. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001. zbl 1102.14300; MR1919457.
  • 5. M. Dine, N. Seiberg, X.-G. Wen, and E. Witten. Nonperturbative effects on the string world sheet. Nuclear Phys. B, 278(4):769-789, 1986. MR0862903.
  • 6. S. Diverio and A. Ferretti. On a conjecture of Oguiso about rational curves on Calabi-Yau threefolds. Comment. Math. Helv., 89(1):157-172, 2014. DOI 10.4171/CMH/315; zbl 1304.14049; MR3177911; arxiv 1107.3337.
  • 7. M. Gross and S. Popescu. Calabi-Yau threefolds and moduli of abelian surfaces. I. Comp. Math., 127(2):169-228, 2001. DOI 10.1023/A:1012076503121; zbl 1063.14051; MR1845899; arxiv math/0001089.
  • 8. D.R. Heath-Brown and P.M.H. Wilson. Calabi-Yau threefolds with $\rho> 13$. Math. Ann., 294(1):49-57, 1992. DOI 10.1007/BF01934312; zbl 0759.14030; MR1180449.
  • 9. Y. Kawamata. Pluricanonical systems on minimal algebraic varieties. Invent. Math., 105(3):567-588, 1985. DOI 10.1007/BF01388524; zbl 0593.14010; MR0782236.
  • 10. Y. Kawamata. On the length of an extremal rational curve. Invent. Math., 105(3):609-611, 1991. DOI 10.1007/BF01232281; zbl 0751.14007; MR1117153.
  • 11. J. Kollár. Deformations of elliptic Calabi-Yau manifolds. In Recent advances in algebraic geometry, volume 417 of London Math. Soc. Lecture Note Ser., 254-290. Cambridge Univ. Press, Cambridge, 2015. zbl 1326.14081; MR3380453.
  • 12. J. Kollár and M. Larsen. Quotients of Calabi-Yau varieties. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, volume 270 of Progr. Math, 179-211. Birkhäuser Boston, Inc., Boston, MA, 2009. DOI 10.1007/978-0-8176-4747-6_6; MR2641190.
  • 13. J. Kollár and S. Mori. Birational geometry of algebraic varietie, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. zbl 1143.14014; MR1658959.
  • 14. S. Kobayashi. Differential geometry of complex vector bundles. Publications of the Mathematical Society of Japan, 15. Kanô Memorial Lectures, 5. Princeton University Press, Princeton, NJ, 1987. xii+305 pp. ISBN: 0-691-08467-X. zbl 0708.53002; MR0909698.
  • 15. S. Kobayashi. Hyperbolic complex spaces, volume 318 of Grundlehren der Math. Wiss. Springer-Verlag, Berlin, 1998. zbl 0917.32019; MR1635983.
  • 16. R. Lazarsfeld. Positivity in algebraic geometry. I \& II, volume 48 \& 49 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, 2004. zbl 1066.14021; MR2095471.
  • 17. Y. Miyaoka. The Chern classes and Kodaira dimension of a minimal variety. In Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., 449-476. North-Holland, Amsterdam, 1987. zbl 0648.14006; MR0946247.
  • 18. Y. Miyaoka. Rational curves on algebraic varieties. In Proceedings of the International Congress of Mathematicians (Z\``urich, 1994), 680-689, Birkh\''auser, Basel, 1995. zbl 0866.14012; MR1403968.
  • 19. Y. Miyaoka and Th. Peternell. Geometry of higher dimensional algebraic varieties. Birkhäuser, Basel, 1997. zbl 0865.14018; MR1468476.
  • 20. S. Mori and S. Mukai. The uniruledness of the moduli space of curves of genus 11. In Michel Raynaud and Tetsuji Shioda, editors, Algebraic Geometry, volume 1016 of Lecture Notes in Mathematics, 334-353. Springer Berlin Heidelberg, 1983. zbl 0557.14015; MR0726433.
  • 21. K. Oguiso. On algebraic fiber space structures on a Calabi-Yau $3$-fold. With an appendix by Noboru Nakayama. Internat. J. Math., 4(3):439-465, 1993. DOI 10.1142/S0129167X93000248; zbl 0793.14030; MR1228584.
  • 22. Th. Peternell. Calabi-Yau manifolds and a conjecture of Kobayashi. Math. Z., 207(1):305-318, 1991. DOI 10.1007/BF02571390; zbl 0735.14028; MR1109668.
  • 23. P.M.H. Wilson. Calabi-Yau manifolds with large Picard number. Invent. Math., 98(1):139-155, 1989. DOI 10.1007/BF01388848; zbl 0688.14032; MR1010159.
  • 24. P.M.H. Wilson. The existence of elliptic fibre space structures on Calabi-Yau threefolds. Math. Ann., 300(4):693-703, 1994. DOI 10.1007/BF01450510; zbl 0819.14015; MR1314743.
  • 25. Holomorphic curves on manifolds of $SU(3)$ holonomy. In Mathematical aspects of string theory (San Diego, 1986), 145-149, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987. MR0915821.
  • 26. S.-T. Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31 (3):339-411, 1978. DOI 10.1002/cpa.3160310304; zbl 0369.53059; MR0480350.


Diverio, Simone
Dipartimento di Matematica Guido Castelnuovo, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
Fontanari, Claudio
Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14 38123 Povo, Trento, Italy
Martinelli, Diletta
School of Mathematics, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh SW7 2AZ, UK