Malkiewich, Cary; Merling, Mona

Equivariant \(A\)-Theory

Doc. Math. 24, 815-855 (2019)
DOI: 10.25537/dm.2019v24.815-855

Summary

We give a new construction of the equivariant \(K\)-theory of group actions [\textit{C. Barwick}, ``Spectral Mackey functors and equivariant algebraic \(K\)-theory (I)'', Adv. Math. 304, 646--727 (2017; Zbl 1348.18020) and \textit{C. Barwick} et al., ``Spectral Mackey functors and equivariant algebraic \(K\)-theory (II)'', Preprint (2015); \url{arXiv:1505.03098}], producing an infinite loop \(G\)-space for each Waldhausen category with \(G\)-action, for a finite group \(G\). On the category \(R(X)\) of retractive spaces over a \(G\)-space \(X\), this produces an equivariant lift of Waldhausen's functor \(A(X)\), and we show that the \(H\)-fixed points are the bivariant \(A\)-theory of the fibration \(X_{hH}\to BH\). We then use the framework of spectral Mackey functors to produce a second equivariant refinement \(A_G(X)\) whose fixed points have tom Dieck type splittings. We expect this second definition to be suitable for an equivariant generalization of the parametrized \(h\)-cobordism theorem.

Mathematics Subject Classification

19D10, 19C99, 55N91, 55P91, 55Q91, 18D50

Keywords/Phrases

equivariant, \(A\)-theory, \(K\)-theory, Mackey functor, transfers, \(G\)-spectrum, Waldhausen categories

References

  • 1. Clark Barwick, Spectral Mackey functors and equivariant algebraic $K$-theory (I), Advances in Mathematics 304 (2017), 646-727. DOI 10.1016/j.aim.2016.08.043; zbl 1348.18020; MR3558219; arxiv 1404.0108.
  • 2. Bernard Badzioch and Wojciech Dorabia\la, Fixed points of the equivariant algebraic K-theory of spaces, Proceedings of the American Mathematical Society 145 (2017), no. 9, 3709-3716. DOI 10.1090/proc/13584; zbl 06740469; MR3665026; arxiv 1609.04654.
  • 3. Clark Barwick, Saul Glasman, and Jay Shah, Spectral Mackey functors and equivariant algebraic $K$-theory (II) (2015). arxiv 1505.03098v2.
  • 4. Andrew J. Blumberg and Michael A. Mandell, Derived Koszul duality and involutions in the algebraic K-theory of spaces, Journal of Topology 4 (2011), no. 2, 327-342. DOI 10.1112/jtopol/jtr003; zbl 1236.19001; MR2805994; arxiv 0912.1670.
  • 5. Anna Marie Bohmann and Angélica Osorno, Constructing equivariant spectra via Waldhausen Mackey functors, in preparation.
  • 6. Anna Marie Bohmann and Angélica Osorno, Constructing equivariant spectra via categorical Mackey functors, Algebraic \& Geometric Topology 15 (2015), no. 1, 537-563. DOI 10.2140/agt.2015.15.537; zbl 1314.55005; MR3325747; arxiv 1405.6126.
  • 7. Wiliam Dwyer, Michael Weiss, and Bruce Williams, A parametrized index theorem for the algebraic $K$-theory Euler class, Acta Mathematica 190 (2003), no. 1, 1-104. DOI 10.1007/BF02393236; zbl 1077.19002; MR1982793.
  • 8. Bertrand Guillou and J. P. May, Models of G-spectra as presheaves of spectra (2011). arx iv 1110.3571.
  • 9. Bertrand Guillou and Peter May, Equivariant iterated loop space theory and permutative $G$-categories, Algebraic \& Geometric Topology 17 (2017), no. 6, 3259-3339. DOI 10.2140/agt.2017.17.3259; zbl 1394.55008; MR3709647; arxiv 1207.3459.
  • 10. Lars Hesselholt and Ib Madsen, Real algebraic $K$-theory, to appear (2013).
  • 11. Wolfgang Lück, Transformation groups and algebraic $K$-theory, Lecture Notes in Mathematics, vol. 1408, Springer-Verlag, Berlin, 1989, Mathematica Gottingensis. DOI 10.1007/BFb0083681; zbl 0679.57022; MR1027600.
  • 12. Cary Malkiewich, Coassembly and the $K$-theory of finite groups (2015). arxiv 1503.06504.
  • 13. J. Peter May, The geometry of iterated loop spaces, Springer-Verlag, Berlin, 1972, Lectures Notes in Mathematics, Vol. 271. zbl 0244.55009; MR0420610.
  • 14. J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. zbl 0321.55033; MR0370579.
  • 15. J. Peter May, The spectra associated to permutative categories, Topology 17 (1978), no. 3, 225-228. DOI 10.1016/0040-9383(78)90027-7; zbl 0417.55011; MR508886.
  • 16. J. Peter May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996, With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. zbl 0890.55001; MR1413302.
  • 17. Mona Merling, Equivariant algebraic $K$-theory of $G$-rings, Mathematische Zeitschrift 285 (2015), no. 3, 1205-1248. DOI 10.1007/s00209-016-1745-3; zbl 1365.19007; MR3623747; arxiv 1505.07562.
  • 18. Saunders Mac Lane, Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. zbl 0906.18001; MR1712872.
  • 19. J. Peter May, Mona Merling, and Angélica Osorno, Equivariant infinite loop space I, the space level story. In preparation (2017). arxiv 1704.03413.
  • 20. J. Peter May and J. Sigurdsson, Parametrized homotopy theory, Mathematical Surveys and Monographs, vol. 132, American Mathematical Society, Providence, RI, 2006. zbl 1119.55001; MR2271789; arxiv math/0411656.
  • 21. George Raptis and Wolfgang Steimle, On the map of Bökstedt-Madsen from the cobordism category to $A$-theory, Algebraic \& Geometric Topology 14 (2014), no. 1, 299-347. DOI 10.2140/agt.2014.14.299; zbl 1299.19001; MR3158761; arxiv 1110.3196.
  • 22. Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293-312. DOI 10.1016/0040-9383(74)90022-6; zbl 0284.55016; MR0353298.
  • 23. Stefan Schwede and Brooke Shipley, Equivalences of monoidal model categories, Algebraic \& Geometric Topology 3 (2003), no. 1, 287-334. DOI 10.2140/agt.2003.3.287; zbl 1028.55013; MR1997322; arxiv math/0209342.
  • 24. Stefan Schwede and Brooke Shipley, Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103-153. DOI 10.1016/S0040-9383(02)00006-X; zbl 1013.55005; MR1928647.
  • 25. Friedhelm Waldhausen, Algebraic $K$-theory of topological spaces I, Proc. Symp. Pure Math, vol. 32, 1978, pp. 35-60. zbl 0414.18010; MR0520492.
  • 26. Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, NJ, 1983), Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318-419. zbl 0579.18006; MR802796.
  • 27. Friedhelm Waldhausen, Bj\orn Jahren, and John Rognes, Spaces of PL manifolds and categories of simple maps, Annals of Mathematics Studies, vol. 186, Princeton University Press, Princeton, NJ, 2013. DOI 10.1515/9781400846528; zbl 1309.57001; MR3202834.
  • 28. Bruce Williams, Bivariant Riemann Roch theorems, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 377-393. zbl 0976.57027; MR1778119.
  • 29. Michael Weiss and Bruce Williams, Automorphisms of manifolds and algebraic $K$-theory, $K$-Theory 1 (1988), no. 6, 575-626. DOI 10.1007/BF00533787; zbl 0664.57012; MR953917.
  • 30. Inna Zakharevich, The category of Waldhausen categories as a closed multicategory (2014). arxiv 1410.4834.

Affiliation

Malkiewich, Cary
Department of Mathematics, University of Binghamton, Binghamton, New York, USA
Merling, Mona
Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Downloads