Kinser, Ryan; Weist, Thorsten

Tree Normal Forms for Quiver Representations

Doc. Math. 24, 1245-1294 (2019)
DOI: 10.25537/dm.2019v24.1245-1294
Communicated by Henning Krause

Summary

We explore methods for constructing normal forms of indecomposable quiver representations. The first part of the paper develops homological tools for recursively constructing families of indecomposable representations from indecomposables of smaller dimension vector. This is then specialized to the situation of tree modules, where the existence of a special basis simplifies computations and gives nicer normal forms. Motivated by a conjecture of Kac, we use this to construct cells of indecomposable representations as deformations of tree modules. The second part of the paper develops geometric tools for constructing cells of indecomposable representations from torus actions on moduli spaces of representations. As an application, we combine these methods to construct families of indecomposables grouped into cells. These actually give a normal form for all indecomposables of certain roots.

Mathematics Subject Classification

16G20

Keywords/Phrases

quiver representations, tree modules, moduli spaces, normal forms, cell decompositions

References

  • 1. M. Auslander, I. Reiten, and S. O. Smalø. Representation theory of Artin algebras, volume 36 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. zbl 0834.16001 (1995 edition).
  • 2. I. Assem, D. Simson, and A. Skowroński. Elements of the representation theory of associative algebras. Vol. 1, volume 65 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2006. Techniques of representation theory. zbl 1092.16001; MR2197389.
  • 3. A. Bialynicki-Birula. Some theorems on actions of algebraic groups. Ann. of Math. (2), 98:480-497, 1973. DOI 10.2307/1970915; zbl 0275.14007; MR0366940.
  • 4. I. N. Bernstein, I. M. Gelfand, and V. A. Ponomarev. Coxeter functors, and Gabriel's theorem. Uspehi Mat. Nauk, 28(2(170)):19-33, 1973. DOI 10.1070/rm1973v028n02ABEH001526; zbl 0279.08001; MR0393065.
  • 5. D. Birkes. Orbits of linear algebraic groups. Ann. of Math. (2), 93:459-475, 1971. DOI 10.2307/1970884; zbl 0198.35001; MR0296077.
  • 6. W. Crawley-Boevey. Maps between representations of zero-relation algebras. J. Algebra, 126(2):259-263, 1989. DOI 10.1016/0021-8693(89)90304-9; zbl 0685.16018; MR1024991.
  • 7. W. Crawley-Boevey and M. Van den Bergh. Absolutely indecomposable representations and Kac-Moody Lie algebras. Invent. Math., 155(3):537-559, 2004. With an appendix by Hiraku Nakajima. DOI 10.1007/s00222-003-0329-0; zbl 1065.16009; MR2038196; arxiv math/0106009.
  • 8. H. Derksen and J. Weyman. On the canonical decomposition of quiver representations. Compositio Mathematica, 133(3):245-265, 2002. DOI 10.1023/A:1020007100426; zbl 1016.16007; MR1930979.
  • 9. H. Derksen and J. Weyman. An introduction to quiver representations, volume 184 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2017. DOI 10.1090/gsm/184; zbl 06848902; MR3727119.
  • 10. P. Gabriel. The universal cover of a representation-finite algebra. In Representations of algebras (Puebla, 1980), volume 903 of Lecture Notes in Math., pages 68-105. Springer, Berlin-New York, 1981. zbl 0481.16008; MR0654725.
  • 11. P. E. Gunnells, E. Letellier, and F. R. Villegas. Torus orbits on homogeneous varieties and Kac polynomials of quivers. Math. Z., 290(1-2):445-467, 2018. DOI 10.1007/s00209-017-2025-6; zbl 07031345; MR3848440; arxiv 1309.0545.
  • 12. E.L. Green. Graphs with relations, coverings and group-graded algebras. Trans. Amer. Math. Soc., 279(1):297-310, 1983. DOI 10.2307/1999386; zbl 0536.16001; MR0704617.
  • 13. T. Hausel, E. Letellier, and F. Rodriguez-Villegas. Positivity for Kac polynomials and DT-invariants of quivers. Ann. of Math. (2), 177(3):1147-1168, 2013. DOI 10.4007/annals.2013.177.3.8; zbl 1301.16015; MR3034296; arxiv 1204.2375.
  • 14. D. Happel and C. M. Ringel. Tilted algebras. Transactions of the American Mathematical Society, 274(2):399-443, 1982. DOI 10.2307/1999116; zbl 0503.16024; MR0675063.
  • 15. V.G. Kac. Root systems, representations of quivers and invariant theory. In Invariant theory, pages 74-108. Springer, 1983. zbl 0534.14004; MR0718127.
  • 16. A. D. King. Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2), 45(180):515-530, 1994. DOI 10.1093/qmath/45.4.515; zbl 0837.16005; MR1315461.
  • 17. R. Kinser. Rank functions on rooted tree quivers. Duke Math. J., 152(1):27-92, 2010. DOI 10.1215/00127094-2010-006; zbl 1237.16011; MR2643056; arxiv 0807.4496.
  • 18. R. Kinser. Tree modules and counting polynomials. Algebr. Represent. Theory, 16(5):1333-1347, 2013. DOI 10.1007/s10468-012-9359-x; zbl 1306.16007; MR3102957; arxiv 1112.4782.
  • 19. H. Kraft. Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Friedr. Vieweg \& Sohn, Braunschweig, 1984. zbl 0569.14003; MR0768181.
  • 20. H. Krause. Maps between tree and band modules. J. Algebra, 137(1):186-194, 1991. DOI 10.1016/0021-8693(91)90088-P; zbl 0715.16007; MR1090218.
  • 21. G. J. Leuschke and R. Wiegand. Cohen-Macaulay representations, volume 181 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2012. zbl 1252.13001; MR2919145.
  • 22. C. Petzke. Bialynicki-Birula-Zerlegung und Morsetheorie auf geometrischen Quotienten. Diploma thesis, Westf\``alische-Wilhelms-Universit\''at, Münster, 2007.
  • 23. Charles Paquette and Jerzy Weyman. Isotropic Schur roots. Transform. Groups, 23(3):841-874, 2018. DOI 10.1007/s00031-017-9459-0; zbl 1409.16011; MR3836196; arxiv 1605.05719.
  • 24. M. Reineke. Moduli of representations of quivers. In Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., pages 589-637. Eur. Math. Soc., Zürich, 2008. zbl 1206.16009; MR2484736; arxiv 0802.2147.
  • 25. C.M. Ringel. Exceptional modules are tree modules. In Proceedings of the Sixth Conference of the International Linear Algebra Society (Chemnitz, 1996), volume 275/276, pages 471-493, 1998. DOI 10.1016/S0024-3795(97)10046-5; zbl 0964.16014; MR1628405.
  • 26. C.M. Ringel. Indecomposable representations of the Kronecker quivers. Proc. Amer. Math. Soc., 141(1):115-121, 2013. DOI 10.1090/S0002-9939-2012-11296-1; zbl 1284.16017; MR2988715; arxiv 1009.5635.
  • 27. A. Schofield. Semi-invariants of quivers. J. London Math. Soc. (2), 43(3):385-395, 1991. DOI 10.1112/jlms/s2-43.3.385; zbl 0779.16005; MR1113382.
  • 28. A. Schofield. General representations of quivers. Proc. London Math. Soc. (3), 65(1):46-64, 1992. DOI 10.1112/plms/s3-65.1.46; zbl 0795.16008; MR1162487.
  • 29. R. Schiffler. Quiver representations. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2014. DOI 10.1007/978-3-319-09204-1; zbl 1310.16015; MR3308668.
  • 30. T. Weist. Tree modules of the generalised Kronecker quiver. J. Algebra, 323(4):1107-1138, 2010. DOI 10.1016/j.jalgebra.2009.11.033; zbl 1219.16018; MR2578596; arxiv 0901.1780.
  • 31. T. Weist. Tree modules. Bulletin of the London Mathematical Society, 44(5):882-898, 2012. DOI 10.1112/blms/bds019; zbl 1279.16015; MR2975149; arxiv 1011.1203.
  • 32. T. Weist. Localization in quiver moduli spaces. Represent. Theory, 17:382-425, 2013. DOI 10.1090/S1088-4165-2013-00436-3; zbl 1302.14010; MR3073549; arxiv 0903.5442.
  • 33. T. Weist. On the recursive construction of indecomposable quiver representations. J. Algebra, 443:49-74, 2015. DOI 10.1016/j.jalgebra.2015.07.012; zbl 1359.16013; MR3400395; arxiv 1310.2757.

Affiliation

Kinser, Ryan
Department of Mathematics, University of Iowa, Iowa City, Iowa 52242, USA
Weist, Thorsten
Fakult\``at f\''ur Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42097 Wuppertal, Germany

Downloads