Pal, Aprameyo; de Vera-Piquero, Carlos

Pullbacks of Saito-Kurokawa Lifts and a Central Value Formula for Degree 6 \(L\)-Series

Doc. Math. 24, 1935-2036 (2019)
DOI: 10.25537/dm.2019v24.1935-2036
Communicated by Otmar Venjakob


We prove an explicit central value formula for a family of complex \(L\)-series of degree 6 for \(\text{GL}_2 \times \text{GL}_3\) which arise as factors of certain Garret-Rankin triple product \(L\)-series associated with modular forms. Our result generalizes a previous formula of Ichino involving Saito-Kurokawa lifts, and as an application we prove Deligne's conjecture stating the algebraicity of the central values of the considered \(L\)-series up to the relevant periods.

Mathematics Subject Classification

11F46, 11F30, 11F27, 11F67


central value formula, Saito-Kurokawa lifts, automorphic periods, Gross-Prasad conjecture


  • [AL70]. A. O. L. Atkin and J. Lehner. Hecke operators on \(\Gamma_0(m)\). Math. Ann., 185:134-160, 1970. DOI 10.1007/BF01359701; zbl 0177.34901; MR0268123.
  • [AL78]. A. O. L. Atkin and Wen Ch'ing Winnie Li. Twists of newforms and pseudo-eigenvalues of W-operators. Invent. Math., 48(3):221-243, 1978. DOI 10.1007/BF01390245; zbl 0369.10016; MR0508986.
  • [BFSP04]. S. Böcherer, M. Furusawa, and R. Schulze-Pillot. On the global Gross-Prasad conjecture for Yoshida liftings. In Contributions to automorphic forms, geometry, and number theory, pages 105-130. Johns Hopkins Univ. Press, Baltimore, MD, 2004. zbl 1088.11036; MR2058606.
  • [BM07]. E.-M. Baruch and Z. Mao. Central value of automorphic L-functions. Geom. Funct. Anal., 17(2):333-384, 2007. DOI 10.1007/s00039-007-0601-3; zbl 1191.11012; MR2322488; arxiv math/0301115.
  • [Böc85]. S. Böcherer. Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen. II. Math. Z., 189(1):81-110, 1985. DOI 10.1007/BF01246946; zbl 0558.10022; MR0776540.
  • [BS98]. R. Berndt and R. Schmidt. Elements of the representation theory of the Jacobi group, volume 163 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1998. zbl 0931.11013; MR1634977.
  • [Che19]. S.-Y. Chen. Pullback formulae for nearly holomorphic Saito-Kurokawa lifts. Manuscripta Math. (2019). DOI 10.1007/s00229-019-01111-2; arxiv 1806.09467.
  • [Das16]. S. Dasgupta. Factorization of p-adic Rankin L-series. Invent. Math., 205(1):221-268, 2016. DOI 10.1007/s00222-015-0634-4; zbl 1361.11076; MR3514962.
  • [Del79]. P. Deligne. Valeurs de fonctions L et périodes d'intégrales. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 313-346. Amer. Math. Soc., Providence, R.I., 1979. With an appendix by N. Koblitz and A. Ogus. zbl 0449.10022; MR0546622.
  • [EZ85]. M. Eichler and D. Zagier. The theory of Jacobi forms, volume 55 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1985. zbl 0554.10018; MR0781735.
  • [Gar84]. P. B. Garrett. Pullbacks of Eisenstein series; applications. In Automorphic forms of several variables (Katata, 1983), volume 46 of Progr. Math., pages 114-137. Birkhäuser Boston, Boston, MA, 1984. zbl 0544.10023; MR0763012.
  • [Gar87]. P. B. Garrett. Decomposition of Eisenstein series: Rankin triple products. Ann. of Math. (2), 125(2):209-235, 1987. DOI 10.2307/1971310; zbl 0625.10020; MR0881269.
  • [GG09]. W. T. Gan and N. Gurevich. Restrictions of Saito-Kurokawa representations. In Automorphic forms and L-functions. I. Global aspects, volume 488 of Contemp. Math., pages 95-124. Amer. Math. Soc., Providence, RI, 2009. With an appendix by Gordan Savin. zbl 1185.11036; MR2522029.
  • [GT11]. W.-T. Gan and S. Takeda. Theta correspondences for GSp(4). Represent. Theory, 15:670-718, 2011. DOI 10.1090/S1088-4165-2011-00405-2; zbl 1239.11062; MR2846304; arxiv 1006.3367.
  • [GJ78]. S. Gelbart and H. Jacquet. A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup. (4), 11(4):471-542, 1978. DOI 10.24033/asens.1355; zbl 0406.10022; MR0533066.
  • [Hid86]. H. Hida. Galois representations into \(GL_2( Z_p\)[[X]]) attached to ordinary cusp forms. Invent. Math., 85(3):545-613, 1986. DOI 10.1007/BF01390329; zbl 0612.10021; MR0848685.
  • [Hid00]. H. Hida. Modular forms and Galois cohomology, volume 69 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2000. zbl 0952.11014; MR1779182.
  • [Ibu12]. T. Ibukiyama. Saito-Kurokawa liftings of level N and practical construction of Jacobi forms. Kyoto J. Math., 52(1):141-178, 2012. DOI 10.1215/21562261-1503791; zbl 1284.11085; MR2892771.
  • [Ich05]. A. Ichino. Pullbacks of Saito-Kurokawa lifts. Invent. Math., 162(3):551-647, 2005. DOI 10.1007/s00222-005-0454-z; zbl 1188.11020; MR2198222.
  • [II08]. A. Ichino and T. Ikeda. On Maass lifts and the central critical values of triple product L-functions. Amer. J. Math., 130(1):75-114, 2008. DOI 10.1353/ajm.2008.0006; zbl 1169.11018; MR2382143.
  • [II10]. A. Ichino and T. Ikeda. On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture. Geom. Funct. Anal., 19(5):1378-1425, 2010. DOI 10.1007/s00039-009-0040-4; zbl 1216.11057; MR2585578.
  • [JL70]. H. Jacquet and R. P. Langlands. Automorphic forms on GL(2). Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin-New York, 1970. DOI 10.1007/BFb0058988; zbl 0236.12010; MR0401654.
  • [Kna79]. A. W. Knapp. Representations of \(GL_2(\mathbb{R} )\) and \(GL_2(\mathbb{C} )\). In A. Borel and W. Casselman (editors), Automorphic Forms, Representations and L-functions, Part 1, volume 33, pages 87-91. Amer. Math. Soc., 1979. zbl 0412.22014; MR0546590.
  • [Koh80]. W. Kohnen. Modular forms of half-integral weight on \(\Gamma_0(4)\). Math. Ann., 248(3):249-266, 1980. DOI 10.1007/BF01420529; zbl 0416.10023; MR0575942.
  • [Koh82]. W. Kohnen. Newforms of half-integral weight. J. Reine Angew. Math., 333:32-72, 1982. DOI 10.1515/crll.1982.333.32; zbl 0475.10025; MR0660784.
  • [Koh85]. W. Kohnen. Fourier coefficients of modular forms of half-integral weight. Math. Ann., 271(2):237-268, 1985. DOI 10.1007/BF01455989; zbl 0542.10018; MR0783554.
  • [KT04]. H. Kojima and Y. Tokuno. On the Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces and the critical values of zeta functions. Tohoku Math. J. (2), 56(1):125-145, 2004. DOI 10.2748/tmj/1113246384; zbl 1093.11030; MR2028921.
  • [Kud94]. S. S. Kudla. The local Langlands correspondence: the non-Archimedean case. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 365-391. Amer. Math. Soc., Providence, RI, 1994. zbl 0811.11072; MR1265559.
  • [MR00]. M. Manickam and B. Ramakrishnan. On Shimura, Shintani and Eichler-Zagier correspondences. Trans. Amer. Math. Soc., 352(6):2601-2617, 2000. DOI 10.1090/S0002-9947-00-02423-5; zbl 0985.11020; MR1637086; MR00]2000.
  • [Nel19]. P. D. Nelson. Subconvex equidistribution of cusp forms: reduction to Eisenstein observables. Duke Math. J., 168(9):1665-1722, 2019. DOI 10.1215/00127094-2019-0005; zbl 07097312; MR3961213; arxiv 1702.02908.
  • [Nel11]. P. D. Nelson. Equidistribution of cusp forms in the level aspect. Duke Math. J., 160(3):467-501, 2011. DOI 10.1215/00127094-144287; zbl 1273.11069; MR2852367; arxiv 1011.1292.
  • [Pra90]. D. Prasad. Trilinear forms for representations of GL(2) and local \(\epsilon \)-factors. Compositio Math., 75(1):1-46, 1990. zbl 0731.22013; MR1059954.
  • [PS83]. I. I. Piatetski-Shapiro. On the Saito-Kurokawa lifting. Invent. Math., 71(2):309-338, 1983. DOI 10.1007/BF01389101; zbl 0515.10024; MR0689647.
  • [Qiu14]. Y. Qiu. Periods of Saito-Kurokawa representations. Int. Math. Res. Not. IMRN, (24):6698-6755, 2014. DOI 10.1093/imrn/rnt179; zbl 1370.11060; MR3291638.
  • [Sch02]. R. Schmidt. Some remarks on local newforms for GL(2). J. Ramanujan Math. Soc., 17(2):115-147, 2002. zbl 0997.11040; MR1913897.
  • [Shi72]. H. Shimizu. Theta series and automorphic forms on \(GL_2\). J. Math. Soc. Japan, 24:638-683, 1972. DOI 10.2969/jmsj/02440638; zbl 0241.10016; MR0333081.
  • [Shi73]. G. Shimura. On modular forms of half integral weight. Ann. of Math. (2), 97:440-481, 1973. DOI 10.2307/1970831; zbl 0266.10022; MR0332663.
  • [Shi77]. G. Shimura. On the periods of modular forms. Math. Ann., 229(3):211-221, 1977. DOI 10.1007/BF01391466; zbl 0363.10019; MR0463119.
  • [Wal80]. J.-L. Waldspurger. Correspondance de Shimura. J. Math. Pures Appl. (9), 59(1):1-132, 1980. MR0577010.
  • [Wal81]. J.-L. Waldspurger. Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. (9), 60(4):375-484, 1981. zbl 0431.10015; MR0646366.
  • [Wat02]. T. C. Watson. Rankin triple products and quantum chaos. ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.), Princeton University. MR2703041.
  • [Woo]. M. Woodbury. Trilinear forms and subconvexity of the tiple product L-function. Preprint.
  • [Xue]. H. Xue. Central values of degree 6 L-functions. To appear in Journal of Number Theory.
  • [Xue18]. H. Xue. Fourier-Jacobi periods of classical Saito-Kurokawa lifts. Ramanujan J., 45(1):111-139, 2018. DOI 10.1007/s11139-016-9829-6; zbl 06839068; MR3745067.
  • [YZZ13]. X. Yuan, S.-W. Zhang, and W. Zhang. The Gross-Zagier formula on Shimura curves, volume 184 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2013. DOI 10.1515/9781400845644; zbl 1272.11082; MR3237437.


Pal, Aprameyo
Fakultät für Mathematik, Universität Duisburg-Essen, Essen, Germany
de Vera-Piquero, Carlos
Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Spain