Kanda, Ryo

Non-Exactness of Direct Products of Quasi-Coherent Sheaves

Doc. Math. 24, 2037-2056 (2019)
DOI: 10.25537/dm.2019v24.2037-2056
Communicated by Henning Krause

Summary

For a noetherian scheme that has an ample family of invertible sheaves, we prove that direct products in the category of quasi-coherent sheaves are not exact unless the scheme is affine. This result can especially be applied to all quasi-projective schemes over commutative noetherian rings. The main tools of the proof are the Gabriel-Popescu embedding and Roos' characterization of Grothendieck categories satisfying Ab6 and Ab4*.

Mathematics Subject Classification

14F05, 18E20, 16D90, 16W50, 13C60

Keywords/Phrases

quasi-coherent sheaf, divisorial scheme, invertible sheaf, direct product, Gabriel-Popescu embedding, Grothendieck category

References

  • 1. Martin Brandenburg, Alexandru Chirvasitu, and Theo Johnson-Freyd, Reflexivity and dualizability in categorified linear algebra, Theory Appl. Categ. 30 (2015), Paper No. 23, 808-835. zbl 1374.18003; MR3361309; arxiv 1409.5934.
  • 2. Mario Borelli, Some results on ampleness and divisorial schemes, Pacific J. Math. 23 (1967), 217-227. DOI 10.2140/pjm.1967.23.217; zbl 0156.41103; MR0219545.
  • 3. Martin Brandenburg, Rosenberg's reconstruction theorem, Expo. Math. 36 (2018), no. 1, 98-117. DOI 10.1016/j.exmath.2017.08.005; zbl 1415.18004; MR3780029; arxiv 1310.5978.
  • 4. Holger Brenner and Stefan Schröer, Ample families, multihomogeneous spectra, and algebraization of formal schemes, Pacific J. Math. 208 (2003), no. 2, 209-230. DOI 10.2140/pjm.2003.208.209; zbl 1095.14004; MR1970862; arxiv math/0012082.
  • 5. F. Castaño Iglesias, P. Enache, C. Nastasescu, and B. Torrecillas, Un analogue du théorème de Gabriel-Popescu et applications, Bull. Sci. Math. 128 (2004), no. 4, 323-332. DOI 10.1016/j.bulsci.2003.12.004; zbl 1074.18002; MR2052174.
  • 6. Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. DOI 10.24033/bsmf.1583; zbl 0201.35602; MR0232821.
  • 7. Ofer Gabber and Lorenzo Ramero, Almost ring theory, Lecture Notes in Mathematics, vol. 1800, Springer-Verlag, Berlin, 2003. DOI 10.1007/b10047; zbl 1045.13002; MR2004652; arxiv math/0002064.
  • 8. Alexander Grothendieck, Sur quelques points d'algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119-221. zbl 0118.26104; MR0102537.
  • 9. Alexander Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. (1961), no. 8, 222 pp. zbl 0118.36206; MR0217084.
  • 10. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, No. 52. zbl 0531.14001; MR0463157.
  • 11. Ryo Kanda, Classifying Serre subcategories via atom spectrum, Adv. Math. 231 (2012), no. 3-4, 1572-1588. DOI 10.1016/j.aim.2012.07.009; zbl 1255.18011; MR2964615; arxiv 1112.6253.
  • 12. Ryo Kanda, Classification of categorical subspaces of locally noetherian schemes, Doc. Math. 20 (2015), 1403-1465. https://www.elibm.org/article/10000362; zbl 1349.14061; MR3452186.
  • 13. Ryo Kanda, Specialization orders on atom spectra of Grothendieck categories, J. Pure Appl. Algebra 219 (2015), no. 11, 4907-4952. DOI 10.1016/j.jpaa.2015.03.012; zbl 1417.18003; MR3351569; arxiv 1308.3928.
  • 14. Ryo Kanda, Finiteness of the number of minimal atoms in Grothendieck categories, J. Algebra 527 (2019), 182-195. DOI 10.1016/j.jalgebra.2019.03.003; zbl 07041657; MR3922832; arxiv 1503.02116.
  • 15. Henning Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005), no. 5, 1128-1162. DOI 10.1112/S0010437X05001375; zbl 1090.18006; MR2157133; arxiv math/0403526.
  • 16. Masaki Kashiwara and Pierre Schapira, Categories and sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332, Springer-Verlag, Berlin, 2006. DOI 10.1007/3-540-27950-4; zbl 1118.18001; MR2182076.
  • 17. Constantin Nastasescu and Costel Chiteş, A version of the Gabriel-Popescu theorem, An. Stiint. Univ. ''Ovidius'' Constanta Ser. Mat. 18 (2010), no. 2, 189-199. zbl 1240.18021; MR2785804.
  • 18. Nicolae Popesco and Pierre Gabriel, Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C. R. Acad. Sci. Paris 258 (1964), 4188-4190. zbl 0126.03304; MR0166241.
  • 19. Nicolae Popescu, Abelian categories with applications to rings and modules, Academic Press, London-New York, 1973, London Mathematical Society Monographs, No. 3. zbl 0271.18006; MR0340375.
  • 20. Mike Prest, Elementary torsion theories and locally finitely presented categories, J. Pure Appl. Algebra 18 (1980), no. 2, 205-212. DOI 10.1016/0022-4049(80)90129-2; zbl 0453.18009; MR0585223.
  • 21. Jan-Erik Roos, Caractérisation des catégories qui sont quotients de catégories de modules par des sous-catégories bilocalisantes, C. R. Acad. Sci. Paris 261 (1965), 4954-4957. zbl 0135.02202; MR0190207.
  • 22. Jan-Erik Roos, Sur les foncteurs dérivés des produits infinis dans les catégories de Grothendieck. Exemples et contre-exemples, C. R. Acad. Sci. Paris Sér. A 263 (1966), 895-898. zbl 0163.26805; MR0215895.
  • 23. Jan-Erik Roos, Sur la condition AB 6 et ses variantes dans les catégories abéliennes, C. R. Acad. Sci. Paris Sér. A 264 (1967), 991-994. zbl 0153.34202; MR0217145.
  • 24. Jan-Erik Roos, Derived functors of inverse limits revisited, J. London Math. Soc. (2) 73 (2006), no. 1, 65-83. DOI 10.1112/S0024610705022416; zbl 1089.18007; MR2197371.
  • 25. Michel Van den Bergh, Noncommutative quadrics, Int. Math. Res. Not. IMRN (2011), no. 17, 3983-4026. DOI 10.1093/imrn/rnq234; zbl 1311.14003; MR2836401; arxiv 0807.3753.
  • 26. Robert Wisbauer, Foundations of module and ring theory. Revised and translated from the 1988 German edition. Algebra, Logic and Applications, vol. 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991, A handbook for study and research. zbl 0746.16001; MR1144522.
  • 27. Quan Shui Wu, On an open problem of Albu and Nastasescu, Kexue Tongbao (English Ed.) 33 (1988), no. 20, 1667-1668. zbl 0668.16023; MR1029695.

Affiliation

Kanda, Ryo
Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Downloads