Saha, Jyoti Prakash

The Density of Ramified Primes

Doc. Math. 24, 2423-2429 (2019)
DOI: 10.25537/dm.2019v24.2423-2429
Communicated by Don Blasius

Summary

Let \(F\) be a number field, \(\mathcal{O}\) be a domain with fraction field \(\mathcal{K}\) of characteristic zero and \(\rho:\text{Gal}(\overline F/F)\to\text{GL}_n(\mathcal{O})\) be a representation such that \(\rho\otimes\overline{\mathcal{K}}\) is semisimple. If \(\mathcal{O}\) admits a finite monomorphism from a power series ring with coefficients in a \(p\)-adic integer ring (resp. \(\mathcal{O}\) is an affinoid algebra over a \(p\)-adic number field) and \(\rho\) is continuous with respect to the maximal ideal adic topology (resp. the Banach algebra topology), then we prove that the set of ramified primes of \(\rho\) is of density zero. If \(\mathcal{O}\) is a complete local Noetherian ring over \(\mathbb{Z}_p\) with finite residue field of characteristic \(p,\rho\) is continuous with respect to the maximal ideal adic topology and the kernels of pure specializations of \(\rho\) form a Zariski-dense subset of \(\text{Spec}\mathcal{O}\), then we show that the set of ramified primes of \(\rho\) is of density zero. These results are analogues, in the context of big Galois representations, of a result of Khare and Rajan, and are proved relying on their result.

Mathematics Subject Classification

11F80

Keywords/Phrases

Galois representations, ramification

References

  • [BC09]. Joël Bellaïche and Gaëtan Chenevier. Families of Galois representations and Selmer groups. Astérisque, 324:xii+314, 2009. zbl 1192.11035; MR2656025.
  • [Bos14]. Siegfried Bosch. Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham, 2014. DOI 10.1007/978-3-319-04417-0; zbl 1314.14002; MR3309387.
  • [Che04]. Gaëtan Chenevier. Familles \(p\)-adiques de formes automorphes pour \(GL_n\). J. Reine Angew. Math., 570:143-217, 2004. DOI 10.1515/crll.2004.031; zbl 1093.11036; MR2075765.
  • [Del71]. Pierre Deligne. Formes modulaires et représentations \(l\)-adiques. In Séminaire Bourbaki. Vol. 1968/69: Exposés 347-363, volume 175 of Lecture Notes in Math., pages Exp. No. 355, 139-172. Springer, Berlin, 1971. zbl 0206.49901; MR3077124.
  • [Eic54]. Martin Eichler. Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math., 5:355-366, 1954. DOI 10.1007/BF01898377; zbl 0059.03804; MR0063406.
  • [FvdP04]. Jean Fresnel and Marius van der Put. Rigid analytic geometry and its applications, volume 218 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2004. zbl 1096.14014; MR2014891.
  • [Hid86a]. Haruzo Hida. Galois representations into \(GL_2({\mathbf Z}_p[[X]])\) attached to ordinary cusp forms. Invent. Math., 85(3):545-613, 1986. DOI 10.1007/BF01390329; zbl 0612.10021; MR0848685.
  • [Hid86b]. Haruzo Hida. Iwasawa modules attached to congruences of cusp forms. Ann. Sci. École Norm. Sup. (4), 19(2):231-273, 1986. DOI 10.24033/asens.1507; zbl 0607.10022; MR0868300.
  • [KR01]. Chandrashekhar Khare and C.S. Rajan. The density of ramified primes in semisimple \(p\)-adic Galois representations. Internat. Math. Res. Notices, (12):601-607, 2001. DOI 10.1155/S1073792801000319; zbl 1043.11049; MR1836789; arxiv math/0011272.
  • [Mat80]. Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980. zbl 0441.13001; MR0575344.
  • [Ram00]. Ravi Ramakrishna. Infinitely ramified Galois representations. Ann. of Math. (2), 151(2):793-815, 2000. DOI 10.2307/121048; zbl 1078.11510; MR1765710; arxiv math/0003241.
  • [Sah17]. Jyoti Prakash Saha. Purity for families of Galois representations. Ann. Inst. Fourier (Grenoble), 67(2):879-910, 2017. DOI 10.5802/aif.3099; zbl 06821963; MR3669514; arxiv 1410.3843.
  • [Ser98]. Jean-Pierre Serre. Abelian \(l\)-adic representations and elliptic curves, volume 7 of Research Notes in Mathematics. A K Peters, Ltd., Wellesley, MA, 1998. With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original. zbl 0902.14016; MR1484415.
  • [Shi58]. Goro Shimura. Correspondances modulaires et les fonctions \(\zeta\) de courbes algébriques. J. Math. Soc. Japan, 10:1-28, 1958. DOI 10.2969/jmsj/01010001; zbl 0081.07603; MR0095173.
  • [ST68]. Jean-Pierre Serre and John Tate. Good reduction of abelian varieties. Ann. of Math. (2), 88:492-517, 1968. DOI 10.2307/1970722; zbl 0172.46101; MR0236190.
  • [{Sta}18]. The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2018.

Affiliation

Saha, Jyoti Prakash
Department of Mathematics, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India

Downloads