Bouganis, Thanasis; Marzec, Jolanta

On the Analytic Properties of the Standard \(L\)-Function Attached to Siegel-Jacobi Modular Forms

Doc. Math. 24, 2613-2684 (2019)
DOI: 10.25537/dm.2019v24.2613-2684
Communicated by Otmar Venjakob

Summary

In this work we study the analytic properties of the standard \(L\)-function attached to Siegel-Jacobi modular forms of higher index, generalizing previous results of Arakawa and Murase. Moreover, we obtain results on the analytic properties of Klingen-type Eisenstein series attached to Jacobi groups.

Mathematics Subject Classification

11R42, 11F50, 11F66, 11F67, 11F46

Keywords/Phrases

Jacobi group, Siegel-Jacobi modular forms, \(L\)-functions, Eisenstein series, Hecke operators

References

  • 1. A.N. Andrianov, V.L. Kalinin, On the analytic properties of standard zeta functions of Siegel modular forms, Mat. Sb. 106 (148) (1978) 323-339; English transl. Math. USSR Sb. 35 (1979), 1-17. DOI 10.1070/SM1979v035n01ABEH001443; zbl 0417.10024; MR0506044.
  • 2. T. Arakawa, Siegel's formula for Jacobi forms, Internat. J. Math. 4 (5) (1993), 689-719. DOI 10.1142/S0129167X93000339; zbl 0811.11031; MR1245348.
  • 3. T. Arakawa, Jacobi Eisenstein Series and a Basis Problem for Jacobi Forms, Comment. Math. Univ. St. Paul. 43 (1994), no. 2, 181-216. zbl 0837.11027; MR1302305.
  • 4. S. Böcherer, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen, Math. Z. 183 (1983), 21-46. DOI 10.1007/BF01187213; zbl 0497.10020; MR0701357.
  • 5. S. Böcherer, Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe. J. Reine Angew. Math. 362 (1985), 146-168. DOI 10.1515/crll.1985.362.146; zbl 0565.10025; MR0809972.
  • 6. S. Böcherer, Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe. Abh. Math. Sem. Univ. Hamburg 56 (1986), 35-47. DOI 10.1007/BF02941505; zbl 0613.10026; MR0882404.
  • 7. S. Böcherer, C.-G. Schmidt, p-adic measures attached to Siegel modular forms. Ann. Inst. Fourier (Grenoble) 50 (2000), no. 5, 1375-1443. DOI 10.5802/aif.1796; zbl 0962.11023; MR1800123.
  • 8. Th. Bouganis, J. Marzec, On the standard \(L\)-function attached to Siegel-Jacobi modular forms of higher index. arxiv 1706.07287.
  • 9. Th. Bouganis, J. Marzec, Algebraicity of special \(L\)-values attached to Siegel-Jacobi modular forms, preprint, available from http://www.maths.dur.ac.uk/users/athanasios.bouganis/Jacobi-algebraic.pdf.
  • 10. M. Eichler, D. Zagier, The theory of Jacobi forms, Progress in Mathematics 55, Springer, 1985. zbl 0554.10018; MR0781735.
  • 11. P. Garrett, Pullbacks of Eisenstein series; applications, Automorphic forms in several variables, Taniguchi Symposium, Katata, 1983, Birkhäuser, 1984, 114-137. zbl 0544.10023; MR0763012.
  • 12. S. Gelbart, I. Piatetski-Shapiro, and S. Rallis, Explicit Constructions of Automorphic L-Functions, Lecture Notes in Math. 1254, Springer, Berlin, 1987. zbl 0612.10022; MR0892097.
  • 13. B. Heim, Analytic Jacobi Eisenstein series and the Shimura method, Math. Kyoto Univ. 43 (2003), no. 3, 451-464. DOI 10.1215/kjm/1250283689; zbl 1065.11029; MR2028661.
  • 14. H. Katsurada, An explicit formula for Siegel series, American Journal of Mathematics 121 (1999), 415-452. DOI 10.1353/ajm.1999.0013; zbl 1002.11039; MR1680317.
  • 15. J. Kramer, An arithmetic theory of Jacobi forms in higher dimensions, J. reine angew. Math. 458 (1995), 157-182. DOI 10.1515/crll.1995.458.157; zbl 0814.11031; MR1310957.
  • 16. E Lapid, S. Rallis, On the local factors of representations of classical groups, Proceedings of The National Academy of Sciences - PNAS, 2005, Ohio State Univ., Math. Res. Inst. Publ. 11, 309-359, 2005. zbl 1188.11023; MR2192828.
  • 17. J. Milne, Canonical Models of (Mixed) Shimura Varieties and Automorphic Vector Bundles, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), 283-414, Perspect. Math. 10, Academic Press, Boston, MA, 1990. zbl 0704.14016; MR1044823.
  • 18. S. Mizumoto, Functional equations of real analytic Jacobi Eisenstein series, Abh. Math. Semin. Univ. Hambg. 89 (2019), no. 1, 55-75. DOI 10.1007/s12188-019-00200-z; zbl 07100737; MR3982741.
  • 19. A. Murase, \(L\)-functions attached to Jacobi forms of degree \(n\). Part I. The basic identity, J. reine angew. Math. 401 (1989), 122-156. DOI 10.1515/crll.1989.401.122; zbl 0671.10023; MR1018057.
  • 20. A. Murase, \(L\)-functions attached to Jacobi forms of degree \(n\). Part II. Functional Equation, Math. Ann. 290 (1991), 247-276. DOI 10.1007/BF01459244; zbl 0721.11022; MR1109633.
  • 21. A. Murase and T. Sugano, Whittaker-Shintani functions on the symplectic group of Fourier-Jacobi type, Compositio Mathematica 79 (1991), 321-349. zbl 0731.11026; MR1121142.
  • 22. G. Shimura, On certain reciprocity-laws for theta functions and modular forms, Acta Math. 141 (1978), 35-71. DOI 10.1007/BF02545742; zbl 0402.10030; MR0491518.
  • 23. G. Shimura, On Eisenstein series, Duke Math. J. 50 (1983), 417-476. DOI 10.1215/S0012-7094-83-05019-6; zbl 0519.10019; MR0705034.
  • 24. G. Shimura, Euler products and Fourier coefficients of automorphic forms on symplectic groups, Invent. Math. 116 (1994), 531-576. DOI 10.1007/BF01231572; zbl 0811.11033; MR1253204.
  • 25. G. Shimura, Differential operators, holomorphic projections and singular modular forms, Duke Math. J. 76 (1994), no. 1, 141-173. DOI 10.1215/S0012-7094-94-07606-0; zbl 0829.11029; MR1301189.
  • 26. G. Shimura, Eisenstein Series and zeta functions on symplectic groups, Invent. Math. 119 (1995), 539-584. DOI 10.1007/BF01245192; zbl 0845.11020; MR1317650.
  • 27. G. Shimura, Euler Products and Eisenstein Series, CBMS Regional Conference Series in Mathematics 93, AMS, 1996. zbl 0906.11020; MR1450866.
  • 28. G. Shimura, Arithmeticity in the Theory of Automorphic Forms, Mathematical Surveys and Monographs 82, AMS, 2000. zbl 0967.11001; MR1780262.
  • 29. N.-P. Skoruppa, Developments in the theory of Jacobi forms, Automorphic functions and their applications (Khabarovsk, 1988), 167-185, 1990. zbl 0745.11029; MR1096975.
  • 30. N.-P. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms, Invent. Math. 94, 113-146 (1988). DOI 10.1007/BF01394347; zbl 0651.10020; MR0958592.
  • 31. N.-P. Skoruppa, D. Zagier, A trace formula for Jacobi forms, J. reine angew. Math. 393 (1989) 168-198. DOI 10.1515/crll.1989.393.168; zbl 0651.10019; MR0972365.
  • 32. J. Sturm, The critical values of zeta functions associated to the symplectic group, Duke Math. J., 48, 2 (1981), 327-350. DOI 10.1215/S0012-7094-81-04819-5; zbl 0483.10026; MR0620253.
  • 33. T. Sugano, Jacobi forms and the theta lifting, Comm. Math. Univ. Sancti Pauli 44 (1995), 1-58. zbl 0840.11021; MR1336417.
  • 34. C. Ziegler, Jacobi Forms of Higher Degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224. DOI 10.1007/BF02942329; zbl 0707.11035; MR1049896.

Affiliation

Bouganis, Thanasis
Department of Mathematical Sciences, Durham University, Durham, UK
Marzec, Jolanta
Department of Mathematics, TU Darmstadt, Darmstadt, Germany

Downloads