Hirose, Minoru

Double Shuffle Relations for Refined Symmetric Multiple Zeta Values

Doc. Math. 25, 365-380 (2020)
DOI: 10.25537/dm.2020v25.365-380
Communicated by Takeshi Saito

Summary

Symmetric multiple zeta values (SMZVs) are elements in the ring of all multiple zeta values modulo the ideal generated by \(\zeta(2)\) introduced by Kaneko-Zagier as counterparts of finite multiple zeta values. It is known that symmetric multiple zeta values satisfy double shuffle relations and duality relations. In this paper, we construct certain lifts of SMZVs which live in the ring generated by all multiple zeta values and \(2\pi i\) as certain iterated integrals on \(\mathbb{P}^1\setminus\{0,1,\infty\} \) along a certain closed path. We call these lifted values refined symmetric multiple zeta values (RSMZVs). We show double shuffle relations and duality relations for RSMZVs. These relations are refinements of the double shuffle relations and the duality relations of SMZVs. Furthermore, we compare RSMZVs to other variants of lifts of SMZVs. Especially, we prove that RSMZVs coincide with Bachmann-Takeyama-Tasaka's \(\xi \)-values [\textit{H. Bachmann} et al., Compos. Math. 154, No. 12, 2701--2721 (2018; Zbl 1429.11161)].

Mathematics Subject Classification

11M32

Keywords/Phrases

multiple zeta values, symmetric multiple zeta values, double shuffle relations, iterated integrals

References

  • 1. Henrik Bachmann, Yoshihiro Takeyama, and Koji Tasaka. Cyclotomic analogues of finite multiple zeta values. Compos. Math., 154(12):2701-2721, 2018. DOI 10.1112/S0010437X18007583; zbl 1429.11161; MR3873529; arxiv 1707.05008.
  • 2. J.I. Burgos Gil and Javier Fresán. Multiple zeta values: from numbers to motives. Clay Mathematics Proceedings, available at http://javier.fresan.perso.math.cnrs.fr/mzv.pdf.
  • 3. A. B. Goncharov. Multiple polylogarithms and mixed tate motives. Preprint, 2001. arxiv math/0103059.
  • 4. Michael E. Hoffman. Quasi-shuffle products. J. Algebraic Combin., 11(1):49-68, 2000. DOI 10.1023/A:1008791603281; zbl 0959.16021; MR1747062; arxiv math/9907173.
  • 5. Kentaro Ihara, Masanobu Kaneko, and Don Zagier. Derivation and double shuffle relations for multiple zeta values. Compos. Math., 142(2):307-338, 2006. DOI 10.1112/S0010437X0500182X; zbl 1186.11053; MR2218898.
  • 6. David Jarossay. Double mélange des multizêtas finis et multizêtas symétrisés. C. R. Math. Acad. Sci. Paris, 352(10):767-771, 2014. DOI 10.1016/j.crma.2014.08.005; zbl 1300.11089; MR3262905.
  • 7. David Jarossay. Adjoint cyclotomic multiple zeta values and cyclotomic multiple harmonic values. Preprint, 2019. arxiv 1412.5099.
  • 8. Masanobu Kaneko. Finite multiple zeta values (in Japanese). RIMS Kôkyûroku Bessatsu, B68:175-190, 2017. zbl 1423.11152; MR3822591.
  • 9. Masanobu Kaneko and Don Zagier. Finite multiple zeta values. (In preparation.
  • 10. Seidai Yasuda. Finite real multiple zeta values generate the whole space \(Z\). Int. J. Number Theory, 12(3):787-812, 2016. DOI 10.1142/S1793042116500512; zbl 1406.11090; MR3477421; arxiv 1403.1134.
  • 11. Jianqiang Zhao. Multiple zeta functions, multiple polylogarithms and their special values, volume 12 of Series on Number Theory and its Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. DOI 10.1142/9634; zbl 1367.11002; MR3469645.

Affiliation

Hirose, Minoru
Faculty of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Downloads