Mendoza Hernández, Octavio; Treffinger, Hipolito

Stratifying Systems through \(\tau\)-Tilting Theory

Doc. Math. 25, 701-720 (2020)
DOI: 10.25537/dm.2020v25.701-720
Communicated by Henning Krause

Summary

In this paper we first show that every non-zero \(\tau\)-rigid \(A\)-module induces at least one stratifying system in the module category of \(A\). Moreover, we show that each of these stratifying systems can be seen as a signed \(\tau\)-exceptional sequence.

Mathematics Subject Classification

18G20, 18E40, 16D10, 16G20

Keywords/Phrases

stratifying system, \(\tau\)-tilting theory, \(\tau\)-exceptional sequence

References

  • 1. T. Adachi, O. Iyama, and I. Reiten. \( \tau \)-tilting theory. Compos. Math., 150(3):415-452, 2014. DOI 10.1112/S0010437X13007422; zbl 1330.16004; MR3187626; arxiv 1210.1036.
  • 2. F. W. Anderson and K. R. Fuller. Rings and categories of modules. Springer-Verlag, New York-Heidelberg, 1974. Graduate Texts in Mathematics, vol. 13. zbl 0301.16001.
  • 3. M. Auslander and S. O. Smalø. Addendum to: ``Almost split sequences in subcategories''. J. Algebra, 71(2):592-594, 1981. DOI 10.1016/0021-8693(81)90199-X; zbl 0474.16022; MR0630621.
  • 4. T. Brüstle, D. Smith, and H. Treffinger. Wall and chamber structure for finite-dimensional algebras. Adv. Math., 354:106746, 31, 2019. DOI 10.1016/j.aim.2019.106746; zbl 07103866; MR3989130; arxiv 1805.01880.
  • 5. A. B. Buan and R. Marsh. \( \tau \)-exceptional sequences, 2018. arxiv 1802.01169.
  • 6. P. Cadavid and E. d. N. Marcos. Stratifying systems over hereditary algebras. J. Algebra Appl., 14(6):1550093, 10, 2015. DOI 10.1142/S0219498815500930; zbl 1317.16008; MR3338089; arxiv 1308.5547.
  • 7. P. Cadavid and E. d. N. Marcos. Stratifying systems over the hereditary path algebra with quiver \(\mathbb{A}_{p,q} \). São Paulo J. Math. Sci., 10(1):73-90, 2016. DOI 10.1007/s40863-015-0029-x; zbl 1362.16017; MR3489211;arxiv 1511.05976.
  • 8. E. Cline, B. Parshall, and L.Scott. Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math., 391:85-99, 1988. zbl 0657.18005; MR0961165.
  • 9. W. Crawley-Boevey. Exceptional sequences of representations of quivers. In Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992), volume 14 of Carleton-Ottawa Math. Lecture Note Ser., page 7. Carleton Univ., Ottawa, ON, 1992. zbl 0824.16010; MR1206935.
  • 10. L. Demonet, O. Iyama, and G. Jasso. \( \tau \)-tilting finite algebras, bricks, and \(g\)-vectors. Int. Math. Res. Not. IMRN, (3):852-892, 2019. DOI 10.1093/imrn/rnx135; zbl 07130859; MR3910476; arxiv 1503.00285.
  • 11. L. Demonet, O. Iyama, N. Reading, I. Reiten, and T. H. Lattice Theory of Torsion classes, 2017. arxiv 1711.01785.
  • 12. V. Dlab. Quasi-hereditary algebras revisited. Representation theory of groups, algebras, and orders (Constanţa, 1995). An. Ştiinţ. Univ. ``Ovidius'' Constanţa, Ser. Mat. 4(2):43-54, 1996. zbl 0873.16008; MR1428453.
  • 13. V. Dlab and C. M. Ringel. Quasi-hereditary algebras. Illinois J. Math., 33(2):280-291, 1989. zbl 0666.16014; MR0987824.
  • 14. V. Dlab and C. M. Ringel. The module theoretical approach to quasi-hereditary algebras. In Representations of algebras and related topics (Kyoto, 1990), volume 168 of London Math. Soc. Lecture Note Ser., pages 200-224. Cambridge Univ. Press, Cambridge, 1992. zbl 0793.16006; MR1211481.
  • 15. K. Erdmann. Stratifying systems, filtration multiplicities and symmetric groups. J. Algebra Appl., 4(5):551-555, 2005. DOI 10.1142/S021949880500140X; zbl 1104.20013; MR2174865.
  • 16. K. Erdmann and C. Sáenz. On standardly stratified algebras. Comm. Algebra, 31(7):3429-3446, 2003. DOI 10.1081/AGB-120022232; zbl 1030.16007; MR1990281.
  • 17. F. Huard, M. Lanzilotta, and O. Mendoza. An approach to the finitistic dimension conjecture. J. Algebra, 19(9):3918-3934, 2008. DOI 10.1016/j.jalgebra.2008.02.008; zbl 1148.16004; MR2407855; arxiv 0710.2328.
  • 18. K. Igusa and G. Todorov. Signed exceptional sequences and the cluster morphism category, 2017. arxiv 1706.02041.
  • 19. G. Jasso. Reduction of \(\tau \)-tilting modules and torsion pairs. Int. Math. Res. Not. IMRN, (16):7190-7237, 2015. DOI 10.1093/imrn/rnu163; zbl 1357.16028; MR3428959; arxiv 1302.2709.
  • 20. E. d. N. Marcos, O. Mendoza, and C. Sáenz. Stratifying systems via relative simple modules. J. Algebra, 280(2):472-487, 2004. DOI 10.1016/j.jalgebra.2004.06.018; zbl 1073.16013; MR2089247.
  • 21. E. D. N. Marcos, O. Mendoza, and C. Sáenz. Stratifying systems via relative projective modules. Comm. Algebra, 33(5):1559-1573, 2005. DOI 10.1081/AGB-200061045; zbl 1096.16004; MR2149076.
  • 22. E. d. N. Marcos, O. Mendoza, and C. Sáenz. Applications of stratifying systems to the finitistic dimension. J. Pure Appl. Algebra, 205(2):393-411, 2006. DOI 10.1016/j.jpaa.2005.07.009; zbl 1105.16011; MR2203623.
  • 23. O. Mendoza and C. Sáenz. Tilting categories with applications to stratifying systems. J. Algebra, 302(1):419-449, 2006. DOI 10.1016/j.jalgebra.2006.01.006; zbl 1122.16008; MR2236609.
  • 24. C. M. Ringel. The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z., 208(2):209-223, 1991. DOI 10.1007/BF02571521; zbl 0725.16011.
  • 25. L. L. Scott. Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories. In The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), volume 47 of Proc. Sympos. Pure Math., pages 271-281. Amer. Math. Soc., Providence, RI, 1987. zbl 0659.20038; MR0933417.

Affiliation

Mendoza Hernández, Octavio
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria C.P. 04510, Ciudad de México, México
Treffinger, Hipolito
Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom

Downloads