Kussin, Dirk; Laking, Rosanna

Cotilting Sheaves over Weighted Noncommutative Regular Projective Curves

Doc. Math. 25, 1029-1077 (2020)
DOI: 10.25537/dm.2020v25.1029-1077
Communicated by Henning Krause

Summary

We consider the category \(\mathrm{Qcoh}\,\mathbb{X}\) of quasicoherent sheaves where \(\mathbb{X}\) is a weighted noncommutative regular projective curve over a field \(k\). This category is a hereditary, locally noetherian Grothendieck category. We classify all indecomposable pure-injective sheaves and all cotilting sheaves of slope \(\infty \). In the cases of nonnegative orbifold Euler characteristic this leads to a classification of pure-injective indecomposable sheaves and a description of all large cotilting sheaves in \(\mathrm{Qcoh}\,\mathbb{X}\).

Mathematics Subject Classification

14A22, 18E10, 18E40, 18G80

Keywords/Phrases

cotilting, pure-injective, weighted projective curve, domestic, tubular, elliptic

References

  • 1. Lidia Angeleri Hügel and Dirk Kussin, Large tilting sheaves over weighted noncommutative regular projective curves, Doc. Math. 22 (2017), 67-134. https://www.elibm.org/article/10000451; zbl 1357.14006; MR3609201; arxiv 1508.03833.
  • 2. Lidia Angeleri Hügel and Dirk Kussin, Tilting and cotilting modules over concealed canonical algebras, Math. Z. 285 (2017), no. 3-4, 821-850. DOI 10.1007/s00209-016-1729-3; zbl 1396.16006; MR3623732; arxiv 1508.03752.
  • 3. Lidia Angeleri Hügel and Javier Sánchez, Tilting modules over tame hereditary algebras, J. Reine Angew. Math. 682 (2013), 1-48. DOI 10.1515/crelle-2012-0040; zbl 1319.16010; MR3181497; arxiv 1007.4233.
  • 4. Kristin Krogh Arnesen, Rosanna Laking, David Pauksztello, and Mike Prest, The Ziegler spectrum for derived-discrete algebras, Adv. Math. 319 (2017), 653-698. DOI 10.1016/j.aim.2017.07.016; zbl 1406.16007; MR3695887; arxiv 1603.00775.
  • 5. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452. DOI 10.1112/plms/s3-7.1.414; zbl 0084.17305; MR0131423.
  • 6. Karin Baur, Aslak Bakke Buan, and Robert J. Marsh, Torsion pairs and rigid objects in tubes, Algebr. Represent. Theory 17 (2014), no. 2, 565-591. DOI 10.1007/s10468-013-9410-6; zbl 1344.16013; MR3181738; arxiv 1112.6132.
  • 7. Apostolos Beligiannis, On the Freyd categories of an additive category, Homology Homotopy Appl. 2 (2000), 147-185. DOI 10.4310/HHA.2000.v2.n1.a11; zbl 1066.18008; MR2027559.
  • 8. Aslak Bakke Buan and Henning Krause, Cotilting modules over tame hereditary algebras, Pacific J. Math. 211 (2003), no. 1, 41-59. DOI 10.2140/pjm.2003.211.41; zbl 1070.16014; MR2016589.
  • 9. Riccardo Colpi, Francesca Mantese, and Alberto Tonolo, Cotorsion pairs, torsion pairs, and \(\Sigma \)-pure-injective cotilting modules, J. Pure Appl. Algebra 214 (2010), no. 5, 519-525. DOI 10.1016/j.jpaa.2009.06.003; zbl 1197.18006; MR2577659; arxiv 0806.4345.
  • 10. Pavel Čoupek and Jan Šťovíček, Cotilting sheaves on noetherian schemes, Math. Z. 296 (2020), no. 1-2, 275-312. DOI 10.1007/s00209-019-02404-8; zbl 07242444; MR4140742; arxiv 1707.01677.
  • 11. William Crawley-Boevey, Locally finitely presented additive categories, Comm. Algebra 22 (1994), no. 5, 1641-1674. DOI 10.1080/00927879408824927; zbl 0798.18006; MR1264733.
  • 12. William Crawley-Boevey, Infinite-dimensional modules in the representation theory of finite-dimensional algebras, Algebras and modules, I (Trondheim, 1996), CMS Conf. Proc., vol. 23, Amer. Math. Soc., Providence, RI, 1998, pp. 29-54. zbl 0920.16007; MR1648602.
  • 13. Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. DOI 10.24033/bsmf.1583; zbl 0201.35602; MR0232821.
  • 14. Rüdiger Göbel and Jan Trlifaj, Approximations and endomorphism algebras of modules. Volume 1, extended ed., De Gruyter Expositions in Mathematics, vol. 41, Walter de Gruyter GmbH \& Co. KG, Berlin, 2012. zbl 1121.16002; MR2985554.
  • 15. Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. zbl 0635.16017; MR935124.
  • 16. Dieter Happel, Idun Reiten, and Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. DOI 10.1090/memo/0575; zbl 0849.16011; MR1327209.
  • 17. Christian U. Jensen and Helmut Lenzing, Model-theoretic algebra with particular emphasis on fields, rings, modules, Algebra, Logic and Applications, vol. 2, Gordon and Breach Science Publishers, New York, 1989. zbl 0728.03026; MR1057608.
  • 18. Henning Krause, The spectrum of a locally coherent category, J. Pure Appl. Algebra 114 (1997), no. 3, 259-271. DOI 10.1016/S0022-4049(95)00172-7; zbl 0868.18003; MR1426488.
  • 19. Henning Krause, Exactly definable categories, J. Algebra 201 (1998), no. 2, 456-492. DOI 10.1006/jabr.1997.7252; zbl 0917.18005; MR1612398.
  • 20. Henning Krause, Generic modules over Artin algebras, Proc. London Math. Soc. (3) 76 (1998), no. 2, 276-306. DOI 10.1112/S0024611598000094; zbl 0908.16016; MR1490239.
  • 21. Henning Krause, Decomposing thick subcategories of the stable module category, Math. Ann. 313 (1999), no. 1, 95-108. DOI 10.1007/s002080050252; zbl 0926.20004; MR1666825.
  • 22. Henning Krause, Smashing subcategories and the telescope conjecture - an algebraic approach, Invent. Math. 139 (2000), no. 1, 99-133. DOI 10.1007/s002229900022; zbl 0937.18013; MR1728877.
  • 23. Henning Krause, The spectrum of a module category, Mem. Amer. Math. Soc. 149 (2001), no. 707, x+125. DOI 10.1090/memo/0707; zbl 0981.16007; MR1803703.
  • 24. Henning Krause, Coherent functors in stable homotopy theory, Fund. Math. 173 (2002), no. 1, 33-56. DOI 10.4064/fm173-1-3; zbl 1001.55022; MR1899046.
  • 25. Henning Krause, Auslander-Reiten triangles and a theorem of Zimmermann, Bull. London Math. Soc. 37 (2005), no. 3, 361-372. DOI 10.1112/S0024609304004011; zbl 1070.18006; MR2131389.
  • 26. Henning Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005), no. 5, 1128-1162. DOI 10.1112/S0010437X05001375; zbl 1090.18006; MR2157133; arxiv math/0403526.
  • 27. Henning Krause, Derived categories, resolutions, and Brown representability, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 101-139. zbl 1132.18005; MR2355771; arxiv math/0511047.
  • 28. Piotr A. Krylov and Askar A. Tuganbaev, Modules over discrete valuation domains, De Gruyter Expositions in Mathematics, vol. 43, Walter de Gruyter GmbH \& Co. KG, Berlin, 2008. zbl 1144.13001; MR2387130.
  • 29. Dirk Kussin, Non-isomorphic derived-equivalent tubular curves and their associated tubular algebras, J. Algebra 226 (2000), no. 1, 436-450. DOI 10.1006/jabr.1999.8200; zbl 0948.14003; MR1749898.
  • 30. Dirk Kussin, Noncommutative curves of genus zero: related to finite dimensional algebras, Mem. Amer. Math. Soc. 201 (2009), no. 942, x+128. DOI 10.1090/memo/0942; zbl 1184.14001; MR2548114.
  • 31. Dirk Kussin, Weighted noncommutative regular projective curves, J. Noncommut. Geom. 10 (2016), no. 4, 1465-1540. DOI 10.4171/JNCG/264; zbl 1357.14007; MR3597149; arxiv 1412.0290.
  • 32. Rosanna Laking, Purity in compactly generated derivators and t-structures with Grothendieck hearts, Math. Z. 295 (2020), no. 3-4, 1615-1641. DOI 10.1007/s00209-019-02411-9; zbl 07238533; MR4125704; arxiv 1804.01326.
  • 33. Helmut Lenzing, Generic modules over tubular algebras, Advances in algebra and model theory (Essen, 1994; Dresden, 1995), Algebra Logic Appl., vol. 9, Gordon and Breach, Amsterdam, 1997, pp. 375-385. zbl 0957.16008; MR1683556.
  • 34. Helmut Lenzing and Hagen Meltzer, Sheaves on a weighted projective line of genus one and representations of a tubular algebra, Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992) (Ottawa, ON), Carleton-Ottawa Math. Lecture Note Ser., vol. 14, Carleton Univ., 1992, p. 25. zbl 0797.14007; MR1206953.
  • 35. Helmut Lenzing and Hagen Meltzer, Tilting sheaves and concealed-canonical algebras, Representation theory of algebras (Cocoyoc, 1994), CMS Conf. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 1996, pp. 455-473. zbl 0863.16013; MR1388067.
  • 36. Helmut Lenzing and Idun Reiten, Hereditary Noetherian categories of positive Euler characteristic, Math. Z. 254 (2006), no. 1, 133-171. DOI 10.1007/s00209-006-0938-6; zbl 1105.18010; MR2232010.
  • 37. Helmut Lenzing and Andrzej Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), no. 2, 161-181. DOI 10.4064/cm-71-2-161-181; zbl 0870.16007; MR1414820.
  • 38. Hidetoshi Marubayashi, Modules over bounded Dedekind prime rings. II, Osaka Math. J. 9 (1972), 427-445. zbl 0262.16005; MR320050.
  • 39. Charles Megibben, Absolutely pure modules, Proc. Amer. Math. Soc. 26 (1970), 561-566. DOI 10.2307/2037108; zbl 0216.33803; MR294409.
  • 40. Ulrich Oberst and Helmut Röhrl, Flat and coherent functors, J. Algebra 14 (1970), 91-105. DOI 10.1016/0021-8693(70)90136-5; zbl 0186.03003; MR0257181.
  • 41. Mike Prest, Ziegler spectra of tame hereditary algebras, J. Algebra 207 (1998), no. 1, 146-164. DOI 10.1006/jabr.1998.7472; zbl 0936.16014; MR1643078.
  • 42. Mike Prest, Purity, spectra and localisation, Encyclopedia of Mathematics and its Applications, vol. 121, Cambridge University Press, Cambridge, 2009. zbl 1205.16002; MR2530988.
  • 43. Mike Prest, Definable additive categories: purity and model theory, Mem. Amer. Math. Soc. 210 (2011), no. 987, vi+109. DOI 10.1090/S0065-9266-2010-00593-3; zbl 1229.03034; MR2791358.
  • 44. Alessandro Rapa, Simple objects in the heart of a t-structure, Ph.D. thesis, University of Verona, 2019.
  • 45. Idun Reiten and Claus Michael Ringel, Infinite dimensional representations of canonical algebras, Canad. J. Math. 58 (2006), no. 1, 180-224. DOI 10.4153/CJM-2006-008-1; zbl 1192.16004; MR2195596; arxiv math/0206195.
  • 46. Claus Michael Ringel, Unions of chains of indecomposable modules, Comm. Algebra 3 (1975), no. 12, 1121-1144. DOI 10.1080/00927877508822091; zbl 0345.16029; MR0401845.
  • 47. Claus Michael Ringel, Infinite-dimensional representations of finite-dimensional hereditary algebras, Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977), Academic Press, London, 1979, pp. 321-412. zbl 0429.16022; MR565613.
  • 48. Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. DOI 10.1007/BFb0072870; zbl 0546.16013; MR774589.
  • 49. Claus Michael Ringel, The Ziegler spectrum of a tame hereditary algebra, Colloq. Math. 76 (1998), no. 1, 105-115. DOI 10.4064/cm-76-1-105-115; zbl 0901.16006; MR1611289.
  • 50. Claus Michael Ringel, Algebraically compact modules arising from tubular families: a survey, Proceedings of the International Conference on Algebra, vol. 11, 2004, pp. 155-172. zbl 1077.16017; MR2058970.
  • 51. Alexander L. Rosenberg, Noncommutative algebraic geometry and representations of quantized algebras, Mathematics and its Applications, vol. 330, Kluwer Academic Publishers Group, Dordrecht, 1995. zbl 0839.16002; MR1347919.
  • 52. Manuel Saorín, On locally coherent hearts, Pacific J. Math. 287 (2017), no. 1, 199-221. DOI 10.2140/pjm.2017.287.199; zbl 1360.18017; MR3613439; arxiv 1605.02658.
  • 53. Manuel Saorín and Jan Šťovíček, On exact categories and applications to triangulated adjoints and model structures, Adv. Math. 228 (2011), no. 2, 968-1007. DOI 10.1016/j.aim.2011.05.025; zbl 1235.18010; MR2822215; arxiv 1005.3248.
  • 54. Bo Stenström, Rings of quotients, Springer-Verlag, New York-Heidelberg, 1975, Die Grundlehren der Mathematischen Wissenschaften, Band 217, An introduction to methods of ring theory. zbl 0296.16001; MR0389953.
  • 55. Michel Van den Bergh, Blowing up of non-commutative smooth surfaces, Mem. Amer. Math. Soc. 154 (2001), no. 734, x+140. DOI 10.1090/memo/0734; zbl 0998.14002; MR1846352; arxiv math/9809116.
  • 56. Jan Šťovíček, Derived equivalences induced by big cotilting modules, Adv. Math. 263 (2014), 45-87. DOI 10.1016/j.aim.2014.06.007; zbl 1301.18015; MR3239134; arxiv 1308.1804.
  • 57. Jan Šťovíček, Otto Kerner, and Jan Trlifaj, Tilting via torsion pairs and almost hereditary noetherian rings, J. Pure Appl. Algebra 215 (2011), no. 9, 2072-2085. DOI 10.1016/j.jpaa.2010.11.016; zbl 1269.16010; MR2786598; arxiv 0903.5454.

Affiliation

Kussin, Dirk
Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
Laking, Rosanna
Università degli Studi di Verona, Strada Le Grazie 15 - Ca' Vignal 2, I-37134 Verona, Italy

Downloads