Fermat's Cubic, Klein's Quartic and Rigid Complex Manifolds of Kodaira Dimension One
Doc. Math. 25, 1241-1262 (2020)
DOI: 10.25537/dm.2020v25.1241-1262
Communicated by Thomas Peternell
Summary
For each \(n \geq 3\) we provide an \(n\)-dimensional rigid compact complex manifold of Kodaira dimension \(1\). First we constructed a series of singular quotients of products of \((n-1)\) Fermat curves with the Klein quartic, which are rigid. Then using toric geometry a suitable resolution of singularities is constructed and the deformation theories of the singular model and of the resolutions are compared, showing the rigidity of the resolutions.
1. Catanese, Fabrizio; Bauer, Ingrid, On rigid compact complex surfaces and manifolds, Adv. Math., 333, 620-669 (2018); DOI 10.1016/j.aim.2018.05.041; zbl 1407.14003; MR3818088; arxiv 1609.08128.
2. Pignatelli, Roberto; Bauer, Ingrid, Rigid but not infinitesimally rigid compact complex manifolds (2018); arxiv 1805.02559.
3. Beauville, Arnaud, Some remarks on Kähler manifolds with \(c_1=0\). In: Progr. Math., 39, Birkhäuser Boston, Boston, MA, Classification of algebraic and analytic manifolds (1982); DOI 10.1007/BF02592068; zbl 0537.53057; MR0728605.
4. Wahl, Jonathan M.; Burns, D. M. Jr., Local contributions to global deformations of surfaces, Invent. Math., 26, 67-88 (1974); DOI 10.1007/BF01406846; zbl 0288.14010; MR0349675.
5. Catanese, Fabrizio, Q.E.D. for algebraic varieties, J. Differential Geom., 77, 1, 43-75 (2007); DOI 10.4310/jdg/1185550815; zbl 1128.14026; MR2344354; arxiv math/0509725.
6. Schenck, Henry K.; Little, John B.; Cox, David A., Toric varieties, Graduate Studies in Mathematics, 124, xxiv+841 pp. (2011), American Mathematical Society, Providence, RI; DOI 10.1090/gsm/124; zbl 1223.14001; MR2810322.
7. Elkies, Noam D., The Klein quartic in number theory. In: Math. Sci. Res. Inst. Publ., 35, Cambridge Univ. Press, Cambridge, The eightfold way; zbl 0991.11032; MR1722413.
8. Fulton, William, Introduction to toric varieties, Annals of Mathematics Studies, 131, xii+157 pp. (1993), Princeton University Press, Princeton, NJ; DOI 10.1515/9781400882526; zbl 0813.14039; MR1234037.
9. Harris, Joseph; Griffiths, Phillip, Principles of algebraic geometry, Wiley Classics Library, xiv+813 pp. (1994), John Wiley \& Sons, Inc., New York; DOI 10.1002/9781118032527; zbl 0836.14001; MR1288523.
10. Klein, Felix, Über die Transformationen siebenter Ordnung der elliptischen Funktionen, Math. Annalen, 14, 428-471 (1879); zbl 11.0297.01; MR1509988.
11. Inoue, Masahisa, On surfaces of Class \(\rm{VII}_0\), Invent. Math., 24, 269-310 (1974); DOI 10.1007/BF01425563; zbl 0283.32019; MR0342734.
12. Kuranishi, M., On the locally complete families of complex analytic structures, Ann. of Math. (2), 75, 536-577 (1962); DOI 10.2307/1970211; zbl 0106.15303; MR0141139.
13. Kuranishi, M., New proof for the existence of locally complete families of complex structures. In: Springer, Berlin, Proc. Conf. Complex Analysis (1964); zbl 0144.21102; MR0176496.
14. Kodaira, Kunihiko; Morrow, James, Complex manifolds, vii+192 pp. (1971), Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London; zbl 0325.32001; MR0302937.
15. Pinkham, Henry, Some local obstructions to deforming global surfaces, Nova Acta Leopoldina (N.F.), 52, 173-178 (1981); zbl 0492.14021; MR0642704.
16. Reid, Miles, Young person's guide to canonical singularities. In: Proc. Sympos. Pure Math., 46, Amer. Math. Soc., Providence, RI, Algebraic geometry, Bowdoin, 1985 (1985); zbl 0634.14003; MR0927963.
17. Schlessinger, Michael, Rigidity of quotient singularities, Invent. Math., 14, 17-26 (1971); DOI 10.1007/BF01418741; zbl 0232.14005; MR0292830.
Affiliation
Bauer, Ingrid
Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
Gleissner, Christian
Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany