Bauer, Ingrid; Gleissner, Christian

Fermat's Cubic, Klein's Quartic and Rigid Complex Manifolds of Kodaira Dimension One

Doc. Math. 25, 1241-1262 (2020)
DOI: 10.25537/dm.2020v25.1241-1262
Communicated by Thomas Peternell

Summary

For each \(n \geq 3\) we provide an \(n\)-dimensional rigid compact complex manifold of Kodaira dimension \(1\). First we constructed a series of singular quotients of products of \((n-1)\) Fermat curves with the Klein quartic, which are rigid. Then using toric geometry a suitable resolution of singularities is constructed and the deformation theories of the singular model and of the resolutions are compared, showing the rigidity of the resolutions.

Mathematics Subject Classification

14J10, 14B12, 14L30, 14M25, 32J15, 32G07, 14J40, 14B05

Keywords/Phrases

rigid complex manifolds, deformation theory, quotient singularities, toric geometry

References

  • 1. Catanese, Fabrizio; Bauer, Ingrid, On rigid compact complex surfaces and manifolds, Adv. Math., 333, 620-669 (2018); DOI 10.1016/j.aim.2018.05.041; zbl 1407.14003; MR3818088; arxiv 1609.08128.
  • 2. Pignatelli, Roberto; Bauer, Ingrid, Rigid but not infinitesimally rigid compact complex manifolds (2018); arxiv 1805.02559.
  • 3. Beauville, Arnaud, Some remarks on Kähler manifolds with \(c_1=0\). In: Progr. Math., 39, Birkhäuser Boston, Boston, MA, Classification of algebraic and analytic manifolds (1982); DOI 10.1007/BF02592068; zbl 0537.53057; MR0728605.
  • 4. Wahl, Jonathan M.; Burns, D. M. Jr., Local contributions to global deformations of surfaces, Invent. Math., 26, 67-88 (1974); DOI 10.1007/BF01406846; zbl 0288.14010; MR0349675.
  • 5. Catanese, Fabrizio, Q.E.D. for algebraic varieties, J. Differential Geom., 77, 1, 43-75 (2007); DOI 10.4310/jdg/1185550815; zbl 1128.14026; MR2344354; arxiv math/0509725.
  • 6. Schenck, Henry K.; Little, John B.; Cox, David A., Toric varieties, Graduate Studies in Mathematics, 124, xxiv+841 pp. (2011), American Mathematical Society, Providence, RI; DOI 10.1090/gsm/124; zbl 1223.14001; MR2810322.
  • 7. Elkies, Noam D., The Klein quartic in number theory. In: Math. Sci. Res. Inst. Publ., 35, Cambridge Univ. Press, Cambridge, The eightfold way; zbl 0991.11032; MR1722413.
  • 8. Fulton, William, Introduction to toric varieties, Annals of Mathematics Studies, 131, xii+157 pp. (1993), Princeton University Press, Princeton, NJ; DOI 10.1515/9781400882526; zbl 0813.14039; MR1234037.
  • 9. Harris, Joseph; Griffiths, Phillip, Principles of algebraic geometry, Wiley Classics Library, xiv+813 pp. (1994), John Wiley \& Sons, Inc., New York; DOI 10.1002/9781118032527; zbl 0836.14001; MR1288523.
  • 10. Klein, Felix, Über die Transformationen siebenter Ordnung der elliptischen Funktionen, Math. Annalen, 14, 428-471 (1879); zbl 11.0297.01; MR1509988.
  • 11. Inoue, Masahisa, On surfaces of Class \(\rm{VII}_0\), Invent. Math., 24, 269-310 (1974); DOI 10.1007/BF01425563; zbl 0283.32019; MR0342734.
  • 12. Kuranishi, M., On the locally complete families of complex analytic structures, Ann. of Math. (2), 75, 536-577 (1962); DOI 10.2307/1970211; zbl 0106.15303; MR0141139.
  • 13. Kuranishi, M., New proof for the existence of locally complete families of complex structures. In: Springer, Berlin, Proc. Conf. Complex Analysis (1964); zbl 0144.21102; MR0176496.
  • 14. Kodaira, Kunihiko; Morrow, James, Complex manifolds, vii+192 pp. (1971), Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London; zbl 0325.32001; MR0302937.
  • 15. Pinkham, Henry, Some local obstructions to deforming global surfaces, Nova Acta Leopoldina (N.F.), 52, 173-178 (1981); zbl 0492.14021; MR0642704.
  • 16. Reid, Miles, Young person's guide to canonical singularities. In: Proc. Sympos. Pure Math., 46, Amer. Math. Soc., Providence, RI, Algebraic geometry, Bowdoin, 1985 (1985); zbl 0634.14003; MR0927963.
  • 17. Schlessinger, Michael, Rigidity of quotient singularities, Invent. Math., 14, 17-26 (1971); DOI 10.1007/BF01418741; zbl 0232.14005; MR0292830.

Affiliation

Bauer, Ingrid
Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
Gleissner, Christian
Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany

Downloads