Harvey, John; Kerin, Martin; Shankar, Krishnan

Semi-Free Actions with Manifold Orbit Spaces

Doc. Math. 25, 2085-2114 (2020)
DOI: 10.25537/dm.2020v25.2085-2114
Communicated by Burkhard Wilking

Summary

In this paper, we study smooth, semi-free actions on closed, smooth, simply connected manifolds, such that the orbit space is a smoothable manifold. We show that the only simply connected \(5\)-manifolds admitting a smooth, semi-free circle action with fixed-point components of codimension \(4\) are connected sums of \(\mathbf{S}^3\)-bundles over \(\mathbf{S}^2\). Furthermore, the Betti numbers of the \(5\)-manifolds and of the quotient \(4\)-manifolds are related by a simple formula involving the number of fixed-point components. We also investigate semi-free \(S^3\) actions on simply connected \(8\)-manifolds with quotient a \(5\)-manifold and show, in particular, that there are strong restrictions on the topology of the \(8\)-manifold.

Mathematics Subject Classification

57S17, 55R55, 57K50

Keywords/Phrases

circle action, semi-free action, \(5\)-manifolds, \(4\)-manifolds, \(8\)-manifolds

References

  • 1. P. L. Antonelli, Structure theory for Montgomery-Samelson fiberings between manifolds I, II, Canad. J. Math. 21 (1969), 170-179, ibid. 180-186. DOI 10.4153/CJM-1969-017-1; zbl 0169.54901; MR0238320.
  • 2. P. L. Antonelli, Differentiable Montgomery-Samelson fiberings with finite singular sets, Canad. J. Math. 21 (1969), 170-179, ibid. 1489-1495. DOI 10.4153/CJM-1969-163-9; zbl 0187.45101; MR0261624.
  • [AH70]. [AH70] {atiyahhirzebruch} M. Atiyah and F. Hirzebruch, Spin manifolds and group actions, Essays on Topology and Related Topics, 18-28, Springer, New York, 1970. zbl 0193.52401; MR0278334.
  • [Bar65]. [Bar65] {barden} D. Barden, Simply connected five manifolds, Ann. of Math. (2) 82 (1965), 365-385. DOI 10.2307/1970702; zbl 0136.20602; MR0184241.
  • [Bre67]. [Bre67] {bredon} G. Bredon, A \(\pi_{\ast}\) module structure for \(\theta_{\ast}\) and applications to transformation groups, Ann. of Math., vol. 86 (1967), 434-448. DOI 10.2307/1970609; zbl 0159.53802; MR0221518.
  • 3. R. L. Chazin, Differentiable links in manifolds, Topology 8 (1969), 345-356. DOI 10.1016/0040-9383(69)90020-2; zbl 0193.52803; MR0250325.
  • [CL74]. [CL74] {churchlamotke} P. T. Church and K. Lamotke, Almost free actions on manifolds, Bull. Australian Math. Soc. 10 (1974), 177-196. DOI 10.1017/S000497270004082X; zbl 0273.57018; MR0370632.
  • 4. P. T. Church and J. G. Timourian, Fiber bundles with singularities, J. Math. Mech. 18 (1968/1969), 71-90. zbl 0169.25901; MR0235572.
  • 5. P. E. Conner and E. Dyer, On singular fiberings by spheres, Michigan Math. J. 6 (1959), 303-311. DOI 10.1307/mmj/1028998275; zbl 0090.39203; MR0116334.
  • [DeV14]. [DeV14] {DV} J. DeVito, The classification of compact, simply connected biquotients in dimensions 4 and 5, Diff. Geom. \& Appl. 34 (2014), 128-138. DOI 10.1016/j.difgeo.2014.04.002; zbl 1298.53043; MR3209541; arxiv 1304.1770.
  • [DL05]. [DL05] {duanliang} H. Duan and C. Liang, Circle bundles over 4-manifolds, Arch. Math. (Basel) 85 no. 3 (2005), 278-282. DOI 10.1007/s00013-005-1214-4; zbl 1078.57020; MR2172386; arxiv math/0502469.
  • 6. S. Dyatlov, The sectional curvature remains positive when taking quotients by certain nonfree actions, Siberian Adv. Math. 18 (2008), 1-20. (Translation of Preservation of the positivity of sectional curvature in the case of factorization with respect to some nonfree actions, Mat. Tr. 10 (2007), 62-91). DOI 10.3103/S105513440801001X; zbl 1249.53052; MR2655485; arxiv 0710.3912.
  • 7. M. H. Freedman, Topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357-453. DOI 10.4310/jdg/1214437136; zbl 0528.57011; MR0679066.
  • [G-GK14]. [G-GK14] {GGK} F. Galaz-Garcia and M. Kerin, Cohomogeneity two torus actions on non-negatively curved manifolds of low dimension, Math. Z. 276 no. 1-2 (2014), 133-152. DOI 10.1007/s00209-013-1190-5; zbl 1296.53066; MR3150196; arxiv 1111.1640.
  • 8. A. Haefliger, Differentiable links, Topology 1 (1962), 241-244. DOI 10.1016/0040-9383(62)90106-4; zbl 0108.18201; MR0148076.
  • [Hat83]. [Hat83] {hatcher} A. Hatcher, A proof of the Smale conjecture, \( \text{Diff}(S^3) \simeq \text{O}(4)\), Ann. of Math. (2) 117 no. 3 (1983), 553-607. DOI 10.2307/2007035; zbl 0531.57028; MR0701256.
  • 9. M. W. Hirsch, Differential Topology, Springer, New York, 1976. DOI 10.1007/978-1-4684-9449-5; zbl 0356.57001; MR0448362.
  • 10. S.-T. Hu, On fiberings with singularities, Michigan Math. J. 6 (1959), 131-149. DOI 10.1307/mmj/1028998186; zbl 0085.37801; MR0105111.
  • [Kol06]. [Kol06] {kollar} J. Kollár, Circle actions on simply connected 5-manifolds, Topology 45 no. 3 (2006), 643-671. DOI 10.1016/j.top.2006.01.003; zbl 1094.57020; MR2218760.
  • [Ker12]. [Ker12] {kerin} M. Kerin, On the curvature of biquotients, Math. Ann., 352 no, 1 (2012), 155-178. DOI 10.1007/s00208-011-0634-7; zbl 1246.53054; MR2885580; arxiv 0809.4771.
  • [Lev73]. [Lev73] {levine} J. Levine, Semi-free circle actions on spheres, Invent. Math. 22 (1973), 161-186. DOI 10.1007/BF01392300; zbl 0266.57010; MR0350767.
  • [LL11]. [LL11] {LL} P. Li and K. Liu, Some remarks on circle actions on manifolds, Math. Res. Lett. 18 (2011), 437-446. DOI 10.4310/MRL.2011.v18.n3.a5; zbl 1238.53016; MR2802578; arxiv 1008.4826.
  • [Lott00]. [Lott00] {lott} J. Lott, Signatures and higher signatures of \(S^1\)-quotients, Math. Ann. 316 (2000), 617-657. DOI 10.1007/s002080050347; zbl 0946.57030; MR1758446; arxiv math/9804105.
  • 11. M. Mahowald, On singular fiberings, Canad. J. Math. 15 (1963), 214-219. DOI 10.4153/CJM-1963-025-0; zbl 0112.38101; MR0146845.
  • [May96]. [May96] {mayer} K.-H. Mayer, Semifree \(S^3\) actions and elliptic genera, Topology \& Appl., 71 no. 1 (1996), 93-100. DOI 10.1016/0166-8641(96)00010-7; zbl 0855.57032; MR1391959.
  • 12. D. Mongomery and H. Samelson, Fiberings with singularities, Duke Math. J. 13 (1946), 51-56. DOI 10.1215/S0012-7094-46-01305-1; zbl 0060.41501; MR0015794.
  • [MY57]. [MY57] {my} D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. (2) 65 (1957), 108-116. DOI 10.2307/1969667; zbl 0078.16202; MR0087036.
  • [MY66]. [MY66] {montyang} D. Montgomery and C. T. Yang, Differentiable actions on homotopy 7-spheres, Trans. of the A.M.S. 122 (1966), 480-498. DOI 10.2307/1994562; zbl 0138.18703; MR0200934.
  • [Rok52]. [Rok52] {rokhlin} V. A. Rokhlin, New results in the theory of four dimensional manifolds, Doklady Akad. Nauk. SSSR (N.S.) 84 (1952), 221-224. zbl 0046.40702; MR0052101.
  • 13. S. Smale, On the structure of \(5\)-manifolds, Ann. of Math. (2) 75 (1962), 38-46. DOI 10.2307/1970417; zbl 0101.16103; MR0141133.
  • 14. R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup., 69 (1952), 109-182. DOI 10.24033/asens.998; zbl 0049.40001; MR0054960.
  • [Uch70]. [Uch70] {uchida} F. Uchida, Cobordism groups of semifree \(S^1\) and \(S^3\) actions, Osaka J. Math., 7 (1970), 345-351. zbl 0209.27601; MR0278338.
  • [Wil01]. [Wil01] {wilking} B. Wilking, Index parity of closed geodesics and rigidity of Hopf fibrations, Invent. Math. 144 no. 2 (2001), 281-295. DOI 10.1007/s002220100123; zbl 1028.53044; MR1826371.

Affiliation

Harvey, John
Department of Mathematics, Swansea University, Swansea SA1 8EN, United Kingdom
Kerin, Martin
School of Mathematics, Statistics \& Applied Mathematics, NUI Galway, Ireland
Shankar, Krishnan
Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA

Downloads