Tabuada, Gonçalo

Schur-Finiteness (and Bass-Finiteness) Conjecture for Quadric Fibrations and Families of Sextic du Val del Pezzo Surfaces

Doc. Math. 25, 2339-2354 (2020)
DOI: 10.25537/dm.2020v25.2339-2354
Communicated by Max Karoubi

Summary

Let \(Q \to B\) be a quadric fibration and \(T \to B\) a family of sextic du Val del Pezzo surfaces. Making use of the theory of noncommutative mixed motives, we establish a precise relation between the Schur-finiteness conjecture for \(Q\), resp. for \(T\), and the Schur-finiteness conjecture for \(B\). As an application, we prove the Schur-finiteness conjecture for \(Q\), resp. for \(T\), when \(B\) is low-dimensional. Along the way, we obtain a proof of the Schur-finiteness conjecture for smooth complete intersections of two or three quadric hypersurfaces. Finally, we prove similar results for the Bass-finiteness conjecture.

Mathematics Subject Classification

14A22, 14C15, 14D06

Keywords/Phrases

Schur-finiteness conjecture, Bass-finiteness conjecture, quadric fibrations, du Val del Pezzo surfaces, noncommutative algebraic geometry, noncommutative mixed motives

References

  • 1. D. Abramovich, T. Graber and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks. Amer. J. Math. 130 (2008), no. 5, 1337-1398. DOI 10.1353/ajm.0.0017; zbl 1193.14070; MR2450211; arxiv math/0603151.
  • 2. A. Auel, M. Bernardara and M. Bolognesi, Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems. J. Math. Pures Appl. (9) 102 (2014), no. 1, 249-291. DOI 10.1016/j.matpur.2013.11.009; zbl 1327.14078; MR3212256; arxiv 1109.6938.
  • 3. J. Ayoub, Motives and algebraic cycles: a selection of conjectures and open questions. Hodge theory and \(L^2\)-analysis, 87-125, Adv. Lect. Math. (ALM), vol. 39. Int. Press, Somerville, MA, 2017. zbl 1379.14003; MR3751289.
  • 4. J. Ayoub, Topologie feuilletée et la conservativité des réalisations classiques en caractéristique nulle. Available at http://user.math.uzh.ch/ayoub.
  • 5. H. Bass, Some problems in classical algebraic \(K\)-theory. Algebraic K-theory, II: ''Classical'' algebraic \(K\)-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), 3-73. LNM 342, 1973. zbl 0384.18008; MR0409606.
  • 6. S. Bloch, A. Kas and D. Lieberman, Zero cycles on surfaces with \(p_g=0\). Compositio Math. 33 (1976), 135-145. zbl 0337.14006; MR0435073.
  • 7. A. Bondal and D. Orlov, Derived categories of coherent sheaves. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 47-56. zbl 0996.18007; MR1957019; arxiv math/0206295.
  • 8. A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties. arxiv alg-geom/9506012.
  • 9. J. Bouali, Motives of quadric bundles. Manuscr. Math. 149 (2016), no. 3-4, 347-368. DOI 10.1007/s00229-015-0783-1; zbl 1350.14007; MR3458173; arxiv 1310.2782.
  • 10. C. Cadman, Using stacks to impose tangency conditions on curves. Amer. J. Math. 12 (2007), no. 2, 405-427. DOI 10.1353/ajm.2007.0007; zbl 1127.14002; MR2306040; arxiv math/0312349.
  • 11. P. Deligne, Catégories tensorielles. Dedicated to Yuri I. Manin on the occasion of his 65th birthday. Mosc. Math. J. 2 (2002), no. 2, 22-248. zbl 1005.18009; MR1944506.
  • 12. V. Guletskii, Finite-dimensional objects in distinguished triangles. J. Number Theory 119 (2006), no. 1, 99-127. DOI 10.1016/j.jnt.2005.10.008; zbl 1102.14003; MR2228952; arxiv math/0306297.
  • 13. V. Guletskii and C. Pedrini, Finite-dimensional motives and the conjectures of Beilinson and Murre. Special issue in honor of Hyman Bass on his seventieth birthday. Part III. \(K\)-Theory 30 (2003), no. 3, 24-263. DOI 10.1023/B:KTHE.0000019787.69435.89; zbl 1060.19001; MR2064241; arxiv math/0303170.
  • 14. D. Grayson, Finite generation of \(K\)-groups of a curve over a finite field (after Daniel Quillen). Algebraic K-theory, Part I (Oberwolfach, 1980), 69-90, LNM 966, 1982. zbl 0502.14004; MR0689367.
  • 15. G. Harder, Die Kohomologie \(S\)-arithmetischer Gruppen über Funktionenkörpern. Invent. Math. 42 (1977), 135-175. DOI 10.1007/BF01389786; zbl 0391.20036; MR0473102.
  • 16. K. Helmsauer, Chow Motives of del Pezzo surfaces of degree \(5\) and \(6\). MSc. thesis (2013). Available at https://search.library.ualberta.ca/catalog/6504220.
  • 17. M. Hovey, Model categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence, RI, 1999. zbl 0909.55001; MR1650134.
  • 18. A. Ishii and K. Ueda, The special McKay correspondence and exceptional collections. Tohoku Math. J. (2) 67 (2015), no. 4, 585-609. DOI 10.2748/tmj/1450798075; zbl 1335.14005; MR3436544; arxiv 1104.2381.
  • 19. B. Kahn, Algebraic \(K\)-theory, algebraic cycles and arithmetic geometry. Handbook of Algebraic \(K\)-theory, 351-428, Berlin, New York. Springer-Verlag, 2005. zbl 1115.19003; MR2181827.
  • 20. B. Keller, On differential graded categories. International Congress of Mathematicians (Madrid), Vol. II, 151-190. Eur. Math. Soc., Zürich, 2006. zbl 1140.18008; MR2275593; arxiv math/0601185.
  • 21. S.-I. Kimura, Chow groups are finite dimensional, in some sense. Math. Ann. 33 (2005), no. 1, 173-201. DOI 10.1007/s00208-004-0577-3; zbl 1067.14006; MR2107443.
  • 22. M. Kontsevich, Mixed noncommutative motives. Talk at the Workshop on Homological Mirror Symmetry, Miami, 2010. Available at www-math.mit.edu/auroux/frg/miami10-notes.
  • 23. M. Kontsevich, Notes on motives in finite characteristic. Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, 213-247, Progr. Math., vol. 270, Birkhäuser Boston, Inc., Boston, MA, 2009. DOI 10.1007/978-0-8176-4747-6_7; zbl 1279.11065; MR2641191; arxiv math/0702206.
  • 24. M. Kontsevich, Noncommutative motives. Talk at the IAS on the occasion of the 61. birthday of Pierre Deligne (2005). Available at http://video.ias.edu/Geometry-and-Arithmetic.
  • 25. A. Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics. Adv. Math. 218 (2008), no. 5, 1340-1369. DOI 10.1016/j.aim.2008.03.007; zbl 1168.14012; MR2419925; arxiv math/0510670.
  • 26. A. Kuznetsov, Derived categories of families of sextic del Pezzo surfaces. To appear in IMRN. arxiv 1708.00522.
  • 27. V. Lunts and D. Orlov, Uniqueness of enhancement for triangulated categories. J. Amer. Math. Soc. 23 (2010), no. 3, 853-908. DOI 10.1090/S0894-0347-10-00664-8; zbl 1197.14014; MR2629991; arxiv 0908.4187.
  • 28. C. Mazza, Schur functors and motives. \(K\)-Theory 33 (2004), no. 2, 89-106. DOI 10.1007/s10977-004-6468-2; zbl 1071.14026; MR2131746; arxiv 1010.3932.
  • 29. D. Quillen, Finite generation of the groups \(K_i\) of rings of algebraic integers. Cohomology of groups and algebraic \(K\)-theory, 479-488, Adv. Lect. Math. (ALM), 12 (2010). zbl 1197.19002; MR2655185.
  • 30. D. Quillen, On the cohomology and \(K\)-theory of the general linear groups over a finite field. Ann. of Math. (2) 96 (1972), 552-586. DOI 10.2307/1970825; zbl 0249.18022; MR0315016.
  • 31. A. Shermenev, The motive of an abelian variety. Funct. Anal. 8 (1974), 47-53. DOI 10.1007/BF02028307; zbl 0294.14003; MR0335523.
  • 32. G. Tabuada, Recent developments on noncommutative motives. New Directions in Homotopy Theory, Contemporary Mathematics 707 (2018), 143-173. DOI 10.1090/conm/707/14258; zbl 1397.14013; MR3807746; arxiv 1611.05439.
  • 33. G. Tabuada, Noncommutative Motives. With a preface by Yuri I. Manin. University Lecture Series, 63. American Mathematical Society, Providence, RI, 2015. DOI 10.1090/ulect/063; zbl 1333.14002; MR3379910.
  • 34. G. Tabuada, Voevodsky's mixed motives versus Kontsevich's noncommutative mixed motives. Advances in Mathematics 264 (2014), 506-545. DOI 10.1016/j.aim.2014.07.022; zbl 1349.14025; MR3250292; arxiv 1402.4438.
  • 35. G. Tabuada, Higher \(K\)-theory via universal invariants. Duke Math. J. 145 (2008), no. 1, 121-206. DOI 10.1215/00127094-2008-049; zbl 1166.18007; MR2451292; arxiv 0706.2420.
  • 36. G. Tabuada and M. Van den Bergh, Additive invariants of orbifolds. Geometry and Topology 22 (2018), 3003-3048. DOI 10.2140/gt.2018.22.3003; zbl 1397.14005; MR3811776; arxiv 1612.03162.
  • 37. G. Tabuada and M. Van den Bergh, Noncommutative motives of Azumaya algebras. J. Inst. Math. Jussieu 14 (2015), no. 2, 379-403. DOI 10.1017/S147474801400005X; zbl 1356.14007; MR3315059; arxiv 1307.7946.
  • 38. C. Vial, Algebraic cycles and fibrations. Doc. Math. 18 (2013), 1521-1553. https://elibm.org/article/10000253; zbl 1349.14027; MR3158241; arxiv 1203.2650.
  • 39. V. Voevodsky, Triangulated categories of motives over a field. Cycles, transfers, and motivic homology theories, 188-238, Ann. of Math. Stud., 143, Princeton, NJ, 2000. zbl 1019.14009; MR1764202.
  • 40. C. Voisin, Bloch's conjecture for Catanese and Barlow surfaces. J. Differential Geom. 97 (2014), no. 1, 149-175. DOI 10.4310/jdg/1404912107; zbl 1386.14145; MR3229054; arxiv 1210.3935.
  • 41. C. Voisin, Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme. Ann. Scuola Norm. Sup. Pisa 19 (1992), 473-492. zbl 0786.14006; MR1205880.

Affiliation

Tabuada, Gonçalo
Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK, and Departamento de Matemática and Centro de Matemática e Aplicações (CMA), FCT, UNL, Quinta da Torre, 2829-516 Caparica, Portugal

Downloads