Ravi, Charanya; Sreedhar, Bhamidi

Virtual equivariant Grothendieck-Riemann-Roch formula

Doc. Math. 26, 2061-2094 (2021)
DOI: 10.25537/dm.2021v26.2061-2094
Communicated by Thomas Geisser

Summary

For a \(G\)-scheme \(X\) with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of \textit{B. Fantechi} and \textit{L. Göttsche} [Geom. Topol. 14, No. 1, 83--115 (2010; Zbl 1194.14017)] to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over \(\mathbb{C}\) with proper actions.

Mathematics Subject Classification

14C15, 14C40, 14L30, 19L47

Keywords/Phrases

Riemann-Roch theorems, equivariant Chow groups, equivariant \(K\)-theory

References

  • [AOV08]. Dan Abramovich, Martin Olsson, and Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057-1091, DOI 10.5802/aif.2378, zbl 1222.14004, MR2427954, arxiv math/0703310.
  • [BFM75]. Paul Baum, William Fulton, and Robert MacPherson, Riemann-Roch for singular varieties, Publ. Math. IHES 45 (1975), 101-145, DOI 10.1007/BF02684299, zbl 0332.14003, MR0412190.
  • [BF97]. Kai Behrend and Barbara Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45-88, DOI 10.1007/s002220050136, zbl 0909.14006, MR1437495, arxiv alg-geom/9601010.
  • [BZN18]. David Ben-Zvi and David Nadler, Betti geometric langlands, Proc. Sympos. Pure Math. 97 (2018), 3-41, DOI 10.1090/pspum/097.2/01689, zbl 1457.14027, MR3821166, arxiv 1606.08523.
  • [Br17]. Michel Brion, Algebraic group actions on normal varieties, Trans. Moscow Math. Soc. 78 (2017), 85-107, DOI 10.1090/mosc/263, zbl 1397.14062, MR3738079, arxiv 1703.09506.
  • [CK09]. Ionut Ciocan-Fontanine and Mikhail Kapranov, Virtual fundamental classes via dg-manifolds, Geom. Topol. 13 (2009), no. 3, 1779-1804, DOI 10.2140/gt.2009.13.1779, zbl 1159.14002, MR2496057, arxiv math/0703214.
  • [De73]. Pierre Deligne, La formule de dualité globale, Théorie des topos et cohomologie étale des schémas, Springer, Berlin, Heidelberg (1973), 481-587, DOI 10.1007/BFb0070724, zbl 0259.14006.
  • [EG98]. Dan Edidin and William Graham, Equivariant intersection theory (With an appendix by Angelo Vistoli: The Chow ring of M2), Invent. Math. 131 (1998), no. 3, 595-634, DOI 10.1007/s002220050214, zbl 0940.14003, MR1614555, arxiv alg-geom/9609018.
  • [EG00]. Dan Edidin and William Graham, Riemann-Roch for equivariant Chow groups, Duke Math. J. 102 (2000), no. 3, 567-594, DOI 10.1215/S0012-7094-00-10239-6, zbl 0997.14002, MR1756110, arxiv math/9905081.
  • [EG05]. Dan Edidin and William Graham, Nonabelian localization in equivariant K-theory and Riemann-Roch for quotients, Adv. Math. 198 (2005), no. 2, 547-582, DOI 10.1016/j.aim.2005.06.010, zbl 1093.19004, MR2183388, arxiv math/0411213.
  • [EG08]. Dan Edidin and William Graham, Algebraic cycles and completions of equivariant \(K\)-theory, Duke Math. J. 144 (2008), no. 3, 489-524, DOI 10.1215/00127094-2008-042, zbl 1148.14007, MR2444304, arxiv math/0702671.
  • [Jo07]. Roy Joshua, Bredon-style homology, cohomology and Riemann-Roch for algebraic stacks, Adv. Math. 209 (2007), no. 1, 1-68, DOI 10.1016/j.aim.2006.04.005, zbl 1117.14020, MR2294217.
  • [FG10]. Barbara Fantechi and Lothar Göttsche, Riemann-Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol. 14 (2010), no. 1, 83-115, DOI 10.2140/gt.2010.14.83, zbl 1194.14017, MR2578301, arxiv 0706.0988.
  • [GP99]. Tom Graber and Rahul Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487-518, DOI 10.1007/s002220050293, zbl 0953.14035, MR1666787, arxiv alg-geom/9708001.
  • [Gu20]. Jérémy Guéré, Congruences on K-theoretic Gromov-Witten invariants. Preprint (2020), arxiv 2009.08485.
  • [Ha18]. Daniel Halpern-Leistner, \( \theta \)-stratifications, \( \theta \)-reductive stacks, and applications, Algebraic Geometry: Salt Lake City 2015, 349-379, Proc. Sympos. Pure Math., 97.1, Amer. Math. Soc., Providence, RI (2018), DOI 10.1090/pspum/097.1/01678, zbl 1451.14035, MR3821155, arxiv 1608.04797.
  • [Kh19]. Adeel A. Khan, Virtual fundamental classes of derived stacks I. Preprint (2019), arxiv 1909.01332.
  • [KP19]. Young-Hoon Kiem and Hyeonjun Park, Virtual intersection theories, Adv. Math. 388 (2021), article ID 107858, 51 p., DOI 10.1016/j.aim.2021.107858, zbl 1469.14013, MR4281772, arxiv 1908.03340.
  • [KKP03]. Bumsig Kim, Andrew Kresch, and Tony Pantev, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003), no. 1-2, 127-136, DOI 10.1016/S0022-4049(02)00293-1, zbl 1078.14535, MR1958379.
  • [Ko95]. Maxim Kontsevich, Enumeration of rational curves via torus actions, In The moduli space of curves, 335-368. Birkhäuser Boston (1995), zbl 0885.14028, MR1363062.
  • [Kr99]. Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495-536, DOI 10.1007/s002220050351, zbl 0938.14003, MR1719823, arxiv math/9810166.
  • [KR18]. Amalendu Krishna and Charanya Ravi, Algebraic K-theory of quotient stacks, Ann. K-Theory 3 (2018), no. 2, 207-233, DOI 10.2140/akt.2018.3.207, zbl 1423.19007, MR3781427, arxiv 1509.05147.
  • [KS20]. Amalendu Krishna and Bhamidi Sreedhar, Atiyah-Segal theorem for Deligne-Mumford stacks and applications, J. Algebraic Geom. 29 (2020), no. 3, 403-470, DOI 10.1090/jag/755, zbl 1471.14021, MR4158458, arxiv 1701.05047.
  • [Le04]. Y.-P. Lee, Quantum K-theory I: Foundations, Duke Math. J. 121 (2004), no. 3, 389-424, DOI 10.1215/S0012-7094-04-12131-1, zbl 1051.14064, MR2040281, arxiv math/0105014.
  • [LT98]. Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119-174, DOI 10.1090/S0894-0347-98-00250-1, zbl 0912.14004, MR1467172, arxiv alg-geom/9602007.
  • [Ma12]. Cristina Manolache, Virtual pull-backs, J. Algebraic Geom. 21 (2012), no. 2, 201-245, DOI 10.1090/S1056-3911-2011-00606-1, zbl 1328.14019, MR2877433, arxiv 0805.2065.
  • [GIT]. David Mumford, John Fogarty, and Frances Kirwan, Geometric invariant theory, 3rd enlarged edition, Springer, Berlin (1994), DOI 10.1007/978-3-642-57916-5, zbl 0797.14004, MR1304906.
  • [FMR20]. Nadir Fasola, Sergej Monavari, and Andrea T. Ricolfi, Higher rank K-theoretic Donaldson-Thomas theory of points, Forum Math. Sigma 9 (2021), paper no. e15, 51 p., DOI 10.1017/fms.2021.4, zbl 1462.14057, MR4228267, arxiv 2003.13565; MR20]N20.
  • [Ri20]. Andrea T. Ricolfi, The equivariant Atiyah class, C. R. Math. Acad. Sci. Paris 359 (2021), no. 3, 257-282, DOI 10.5802/crmath.166, zbl 1471.14043, MR4245894, arxiv 2003.05440.
  • [Si04]. Bernd Siebert, Virtual fundamental classes, global normal cones and Fulton's canonical classes, Frobenius manifolds, 341-358, Aspects Math., E36, Friedr. Vieweg, Wiesbaden (2004), zbl 1083.14066, MR2115776, arxiv math/0509076.
  • [Th18]. Richard Thomas, A K-theoretic Fulton class. Preprint (2018), arxiv 1810.00079.
  • [Th20]. Richard Thomas, Equivariant K-theory and refined Vafa-Witten invariants, Comm. Math. Phys. 378 (2020), 1451-1500, DOI 10.1007/s00220-020-03821-1, zbl 1464.14060, MR4134951, arxiv 1810.00078.
  • [Th87]. Robert W. Thomason, Algebraic K-theory of group scheme actions, Ann. of Math. Stud. 113 (1987), 539-563, zbl 0701.19002, MR0921490.
  • [Th87-1]. Robert W. Thomason, Equivariant resolution, linearization, and Hilbert's fourteenth problem over arbitrary base schemes, Adv. in Math. 65 (1987), no. 1, 16-34, DOI 10.1016/0001-8708(87)90016-8, zbl 0624.14025, MR0893468.
  • [To14]. Valentin Tonita, A virtual Kawasaki-Riemann-Roch formula, Pacific J. Math. 268 (2014), no. 1, 249-255, DOI 10.2140/pjm.2014.268.249, zbl 1346.19009, MR3207609, arxiv 1110.3916.
  • [To99]. Burt Totaro, The Chow ring of a classifying space, Proc. Sympos. Pure Math., 67, 249-284, Amer. Math. Soc., Providence, RI (1999), zbl 0967.14005, MR1743244, arxiv math/9802097.
  • [To04]. Burt Totaro, The resolution property of schemes and stacks, J. Reine Angew. Math. 577 (2004), 1-22, DOI 10.1515/crll.2004.2004.577.1, zbl 1077.14004, MR2108211, arxiv math/0207210.
  • [Qu18]. Feng Qu, Virtual pullbacks in \(K\)-theory, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 4, 1609-1641, DOI 10.5802/aif.3194, zbl 1423.19009, MR3887429MR3887429, arxiv 1608.02524; MR38874293887429.
  • [Vi89]. Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613-670, DOI 10.1007/BF01388892, zbl 0694.14001, MR1005008.
  • [Vi91]. Angelo Vistoli, Higher equivariant \(K\)-theory for finite group actions, Duke Math. J. 63 (1991), no. 2, 399-419, DOI 10.1215/S0012-7094-91-06317-9, zbl 0738.55002, MR1115114.

Affiliation

Ravi, Charanya
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
Sreedhar, Bhamidi
Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea

Downloads