We give a new simple proof of boundedness of the family of semistable sheaves with fixed numerical invariants on a fixed smooth projective variety. In characteristic zero our method gives a quick proof of Bogomolov's inequality for semistable sheaves on a smooth projective variety of any dimension \(\ge 2\) without using any restriction theorems.
1. Bogomolov, Fedor Alekseevich. Holomorphic tensors and vector bundles on projective manifolds. (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 1227-1287, 1439, MR0522939.
2. Gieseker, David. On a theorem of Bogomolov on Chern classes of stable bundles, Amer. J. Math. 101 (1979), 77-85, DOI 10.2307/2373939, zbl 0431.14005, MR0527826.
3. Huybrechts, Daniel; Lehn, Manfred. The geometry of moduli spaces of sheaves. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2010. xviii+325 pp., zbl 1206.14027, MR2665168.
4. Langer, Adrian. Semistable sheaves in positive characteristic, Ann. of Math. (2) 159 (2004), 251-276; Addendum to: ``Semistable sheaves in positive characteristic'', Ann. of Math. (2) 160 (2004), 1211-1213, zbl 1080.14014, zbl 1080.14015 (Addendum) MR2051393, MR2144978 (Addendum).
5. Langer, Adrian. Moduli spaces of sheaves in mixed characteristic, Duke Math. J. 124 (2004), 571-586, DOI 10.1215/S0012-7094-04-12434-0, zbl 1086.14036, MR2085175.
6. Langer, Adrian. Moduli spaces and Castelnuovo-Mumford regularity of sheaves on surfaces, Amer. J. Math. 128 (2006), 373-417, DOI 10.1353/ajm.2006.0014, zbl 1102.14030, MR2214897.
7. Langer, Adrian. The Bogomolov-Miyaoka-Yau inequality for logarithmic surfaces in positive characteristic, Duke Math. J. 165 (2016), 2737-2769, DOI 10.1215/00127094-3627203, zbl 1386.14160, MR3551772.
8. Maruyama, Masaki. Moduli spaces of stable sheaves on schemes. Restriction theorems, boundedness and the GIT construction. With the collaboration of T. Abe and M. Inaba. With a foreword by Shigeru Mukai. MSJ Memoirs, 33. Mathematical Society of Japan, Tokyo, 2016. xi+154 pp., DOI 10.2969/msjmemoirs/033010000, zbl 1357.14017, MR3495489.
9. Moriwaki, Atsushi. A note on Bogomolov-Gieseker's inequality in positive characteristic, Duke Math. J. 64 (1991), 361-375, DOI 10.1215/S0012-7094-91-06418-5, zbl 0769.14005, MR1136381.
Affiliation
Langer, Adrian
Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland