Coley, Ian

The theory of half derivators

Doc. Math. 27, 655-698 (2022)
DOI: 10.25537/dm.2022v27.655-698
Communicated by Mike Hill

Summary

We review the theory of derivators from the ground up, defining new classes of derivators which were originally motivated by derivator K-theory. We prove that many old arguments that relied on homotopical bicompleteness hold also for one-sided \textit{half derivators} on arbitrary diagram categories. We end by defining the maximal domain for a K-theory of derivators generalising Waldhausen K-theory.

Mathematics Subject Classification

18N40, 55U35

Keywords/Phrases

derivators, abstract homotopy theory

References

  • [AGV71]. Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Theorie de topos et cohomologie étale des schemas I, II, III, Lecture Notes in Math., 269, 270, 305. Springer, 1972 and 1973, DOI 10.1007/BFb0081551(vol.269), zbl 0234.00007(vol.269), MR0354652(vol.269) DOI 10.1007/BFb0061319(vol.270), zbl 0237.00012vol.270), DOI 10.1007/BFb0070714(vol.305), zbl 0245.00002(vol.305).
  • [Bor94]. Francis Borceux. Handbook of categorical algebra. 1. Basic category theory, Encyclopedia of Mathematics and its Applications, 50. Cambridge University Press, Cambridge, 1994, zbl 0803.18001, MR1291599.
  • [Cis06]. Denis-Charles Cisinski. Les préfaisceaux comme modèles des types d'homotopie. Astérisque (308):xxiv+390, 2006, zbl 1111.18008, MR2294028.
  • [Cis08]. Denis-Charles Cisinski. Propriétés universelles et extensions de Kan dérivées. Theory Appl. Categ. 20(17):605-649, 2008, zbl 1188.18009, MR2534209.
  • [Cis10]. Denis-Charles Cisinski. Catégories dérivables. Bull. Soc. Math. France 138(3):317-393, 2010, DOI 10.24033/bsmf.2592, zbl 1203.18013, MR2729017.
  • [Col19]. Ian Coley. The Stabilization and K-theory of Pointed Derivators. PhD thesis, University of California, Los Angeles, 2019. https://iancoley.org/pub/doctoral-thesis.pdf.
  • [Col20]. Ian Coley. The K-theory of left pointed derivators. Preprint, 2020, arxiv 2009.09063.
  • [Fra96]. Jens Franke. Uniqueness theorems for certain triangulated categories with an Adams spectral sequence, 1996. http://www.math.uiuc.edu/K-theory/0139/Adams.pdf.
  • [Gro90]. Alexandre Grothendieck. Les dérivateurs, 1990, https://webusers.imj-prg.fr/~georges.maltsiniotis/groth/Derivateurs.html.
  • [Gro13]. Moritz Groth. Derivators, pointed derivators and stable derivators. Algebr. Geom. Topol. 13(1):313-374, 2013, DOI 10.2140/agt.2013.13.313, zbl 1266.55009, MR3031644, arxiv 1112.3840.
  • [Gro16a]. Moritz Groth. Characterizations of abstract stable homotopy theories. Preprint, 2016, unpublished, arxiv 1602.07632.
  • [Gro16b]. Moritz Groth. Revisiting the canonicity of canonical triangulations. Theory Appl. Categ. 33:350-389, 2018, zbl 1394.55014, MR3806332, arxiv 1602.04846.
  • [Gro19]. Moritz Groth. The theory of derivators, 2019, http://www.math.uni-bonn.de/~mgroth/monos.htmpl.
  • [Hel88]. Alex Heller. Homotopy theories. Mem. Amer. Math. Soc. 71(383):vi+78, 1988, DOI 10.1090/memo/0383, zbl 0643.55015, MR0920963.
  • [Kel07]. Bernhard Keller. Appendice: Le dérivateur triangulé associé à une catégorie exacte. In Categories in algebra, geometry and mathematical physics, Contemp. Math., 431, 369-373. Amer. Math. Soc., Providence, RI, 2007, MR2342837.
  • [KS74]. G. M. Kelly and Ross Street. Review of the elements of \(2\)-categories. In Category Seminar (Proc. Sem., Sydney, 1972/1973), 75-103. Lecture Notes in Math., 420. Springer, Berlin, 1974, zbl 0334.18016, MR0357542.
  • [LN17]. Ioannis Lagkas-Nikolos. Levelwise modules over separable monads on stable derivators. J. Pure Appl. Algebra 222(7):1704-1726, 2018, DOI 10.1016/j.jpaa.2017.08.001, zbl 1420.18018, MR3763278, arxiv 1608.06340.
  • [Lur09]. Jacob Lurie. Higher topos theory, Annals of Mathematics Studies, 170. Princeton University Press, Princeton, NJ, 2009, DOI 10.1515/9781400830558, zbl 1175.18001, MR2522659, arxiv math/0608040.
  • [Mac71]. Saunders MacLane. Categories for the working mathematician. Graduate Texts in Mathematics, 5. Springer, New York-Berlin, 1971, zbl 0232.18001, MR0354798.
  • [Mal07]. Georges Maltsiniotis. \(La K\)-théorie d'un dérivateur triangulé. In Categories in algebra, geometry and mathematical physics, Contemp. Math., 431, 341-368. Amer. Math. Soc., Providence, RI, 2007, zbl 1136.18002, MR2342836.
  • [Mal12]. Georges Maltsiniotis. Carrés exacts homotopiques et dérivateurs. Cah. Topol. Géom. Différ. Catég. 53(1):3-63, 2012, zbl 1262.18014, MR2951712, arxiv 1101.4144.
  • [ML98]. Saunders Mac Lane. Categories for the working mathematician, Graduate Texts in Mathematics, 5. Springer, New York, second edition, 1998, zbl 0906.18001, MR1712872.
  • [MR17]. Fernando Muro and George Raptis. \(K\)-theory of derivators revisited. Ann. K-Theory 2(2):303-340, 2017, DOI 10.2140/akt.2017.2.303, zbl 1364.19002, MR3590348, arxiv 1402.1871; MR17]MurRap17.
  • [SGA03]. Revêtements étales et groupe fondamental ({SGA} 1), Séminaire de géométrie algébrique du Bois Marie 1960-61. [Algebraic Geometry Seminar of Bois Marie 1960-61], directed by A. Grothendieck, With two papers by M. Raynaud. Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224. Springer, Berlin]. Documents Mathématiques (Paris), 3. Société Mathématique de France, Paris, 2003, zbl 1039.14001, MR2017446.
  • [Shu08]. Michael A. Shulman. Set theory for category theory. Preprint, 2008, unpublished, arxiv 0810.1279.
  • [Wal85]. Friedhelm Waldhausen. Algebraic \(K\)-theory of spaces. In Algebraic and geometric topology (New Brunswick, NJ, 1983), Lecture Notes in Math., 1126, 318-419. Springer, Berlin, 1985, zbl 0579.18006, MR0802796.

Affiliation

Coley, Ian
Department of Mathematics, Rutgers University, Hill Center for the Mathematical Sciences, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

Downloads