Nguyen, Hoang Kim; Raptis, George; Schrade, Christoph

Higher weak (co)limits, adjoint functor theorems, and higher Brown representability

Doc. Math. 27, 1369-1420 (2022)
DOI: 10.25537/dm.2022v27.1369-1420
Communicated by Mike Hill

Summary

We prove general adjoint functor theorems for weakly (co)complete \(n\)-categories. This class of \(n\)-categories includes the homotopy \(n\)-categories of (co)complete \(\infty\)-categories, so these \(n\)-categories do not admit all small (co)limits in general. We also introduce Brown representability for (homotopy) \(n\)-categories and prove a Brown representability theorem for localizations of compactly generated \(n\)-categories. This class of \(n\)-categories includes the homotopy \(n\)-categories of presentable \(\infty\)-categories if \(n \geq 2\), and the homotopy \(n\)-categories of presentable stable \(\infty \)-categories for any \(n \geq 1\).

Mathematics Subject Classification

18N60, 55U35, 18G80, 55P99

Keywords/Phrases

adjoint functor theorem, Brown representability, higher category

References

  • 1. J. Adámek and J. Rosický, Locally presentable and accessible categories. London Mathematical Society Lecture Note Series, 189. Cambridge University Press, Cambridge, 1994, zbl 0795.18007, MR1294136.
  • 2. K. D. Arlin, 2-categorical Brown representability and the relation between derivators and infinity-categories. PhD dissertation, University of California, Los Angeles, 2020. Available online at: https://core.ac.uk/download, /288432569.pdf, MR4094242.
  • 3. K. Arlin and J. D. Christensen, Detecting isomorphisms in the homotopy category. Preprint, 2019. Algebr. Geom. Topol. (to appear), arxiv 1910.04141.
  • 4. E. H. Brown, Jr., Cohomology theories. Ann. of Math. (2) 75 (1962), 467-484, DOI 10.2307/1970209, zbl 0101.40603, MR0138104.
  • 5. A. Campbell and E. Lanari, On truncated quasi-categories. Cah. Topol. Géom. Différ. Catég. 61 (2020), no. 2, 154-207, zbl 1452.18025, arxiv 1810.11188.
  • 6. D.-C. Cisinski, Higher categories and homotopical algebra. Cambridge Studies in Advanced Mathematics, 180. Cambridge University Press, Cambridge, 2019, DOI 10.1017/9781108588737, zbl 1430.18001, MR3931682.
  • 7. D. Dugger and D. I. Spivak, Rigidification of quasi-categories. Algebr. Geom. Topol. 11 (2011), no. 1, 225-261, DOI 10.2140/agt.2011.11.225, zbl 1213.55015, MR2764042, arxiv 0910.0814.
  • 8. D. Dugger and D. I. Spivak, Mapping spaces in quasi-categories. Algebr. Geom. Topol. 11 (2011), no. 1, 263-325, DOI 10.2140/agt.2011.11.263, zbl 1214.55013, MR2764043, arxiv 0911.0469.
  • 9. P. Freyd and A. Heller, Splitting homotopy idempotents. II. J. Pure Appl. Algebra 89 (1993), no. 1-2, 93-106, DOI 10.1016/0022-4049(93)90088-B, zbl 0786.55008, MR1239554.
  • 10. A. Heller, On the representability of homotopy functors. J. London Math. Soc. (2) 23 (1981), no. 3, 551-562, DOI 10.1112/jlms/s2-23.3.551, zbl 0477.55013, MR0616562.
  • 11. A. Joyal, Quasi-categories and Kan complexes. J. Pure Appl. Algebra 175 (2002), no. 1-3, 207-222, DOI 10.1016/S0022-4049(02)00135-4, zbl 1015.18008, MR1935979.
  • 12. J. Lurie, Higher topos theory. Annals of Mathematics Studies, 170. Princeton University Press, Princeton, NJ, 2009. Revised version available online at https://www.math.ias.edu/~lurie/papers/HTT.pdf, DOI 10.1515/9781400830558, zbl 1175.18001, MR2522659, arxiv math/0608040.
  • 13. J. Lurie, Higher algebra. Available online at https://www.math.ias.edu/~lurie/papers/HA.pdf.
  • 14. S. MacLane, Categories for the working mathematician. Graduate Texts in Mathematics, 5. Springer, New York-Berlin, 1971, zbl 0705.18001, MR0354798.
  • 15. A. Neeman, Triangulated categories. Annals of Mathematical Studies, 148. Princeton University Press, Princeton, NJ, 2001, DOI 10.1515/9781400837212, zbl 0974.18008, MR1812507.
  • 16. H. K. Nguyen, G. Raptis, and C. Schrade, Adjoint functor theorems for \(\infty \)-categories. J. Lond. Math. Soc. (2) 101 (2020), no. 2, 659-681, DOI 10.1112/jlms.12282, zbl 1448.18004, MR4093970.
  • 17. G. Raptis, Higher homotopy categories, higher derivators, and \(K\)-theory. Forum Math. Sigma 10 (2022), e54, 1-36, DOI 10.1017/fms.2022.47, zbl 07566135, MR4454336.
  • 18. E. Riehl and D. Verity, The 2-category theory of quasi-categories. Adv. Math. 280 (2015), 549-642, DOI 10.1016/j.aim.2015.04.021, zbl 1319.18005, MR3350229, arxiv 1306.5144.

Affiliation

Nguyen, Hoang Kim
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Raptis, George
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Schrade, Christoph
Mathematisches Institut, WWU Münster, 48149 Münster, Germany

Downloads