Dion, Cedric; Ray, Anwesh

Topological Iwasawa invariants and arithmetic statistics

Doc. Math. 27, 1643-1669 (2022)
DOI: 10.25537/dm.2022v27.1643-1669
Communicated by Otmar Venjakob


Given a prime number \(p\), we study topological analogues of Iwasawa invariants associated to \(\mathbb{Z}_p\)-covers of the \(3\)-sphere that are branched along a link. We prove explicit criteria to detect these Iwasawa invariants, and apply them to the study of links consisting of \(2\) component knots. Fixing the prime \(p\), we prove statistical results for the average behaviour of \(p\)-primary Iwasawa invariants for \(2\)-bridge links that are in Schubert normal form. Our main result, which is entirely unconditional, shows that the density of \(2\)-bridge links for which the \(\mu\)-invariant vanishes, and the \(\lambda\)-invariant is equal to \(1\), is \((1-\frac{1}{p})\). We also conjecture that the density of \(2\)-bridge links for which the \(\mu\)-invariant vanishes is \(1\), and this is significantly backed by computational evidence. Our results are proven in a topological setting, yet have arithmetic significance, as we set out new directions in arithmetic statistics and arithmetic topology.

Mathematics Subject Classification

11R23, 57K10, 57K14


arithmetic statistics, arithmetic topology, topological Iwasawa invariants, knot theory, analogies between number theory and topology


  • [Ale28]. James W. Alexander. Topological invariants of knots and links. Trans. Amer. Math. Soc. 30(2):275-306, 1928, DOI 10.2307/1989123, zbl 54.0603.03, MR1501429.
  • [AM06]. Michael Artin and Barry Mazur. Etale homotopy. Reprint of the 1969 original. Lecture Notes in Mathematics, 100. Springer, 1986, MR0883959.
  • [BKR21]. Lea Beneish, Debanjana Kundu, and Anwesh Ray. Rank jumps and growth of Shafarevich-Tate groups for elliptic curves in \(\mathbb{Z}/p\mathbb{Z} \)-extensions. Preprint, 2021, arxiv 2107.09166.
  • [FG80]. Leslie Jane Federer and Benedict H. Gross. Regulators and Iwasawa modules. Invent. Math. 62(3):443-457, 1980, DOI 10.1007/BF01394254, zbl 0468.12005, MR0604838.
  • [FW79]. Bruce Ferrero and Lawrence C. Washington. The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields. Ann. of Math. (2) 109:377-395, 1979, DOI 10.2307/1971116, zbl 0443.12001, MR0528968.
  • [Gol74]. Robert Gold. The nontriviality of certain \(\mathbb{Z}_\ell \)-extensions. J. Number Theory 6(5):369-373, 1974, DOI 10.1016/0022-314X(74)90034-1, zbl 0288.12004, MR0369316.
  • [Har13]. Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, 52. Springer, 1977, zbl 0367.14001, MR0463157.
  • [Hat]. Allen Hatcher. Algebraic topology. Cambridge University Press, 2002, zbl 1044.55001, MR1867354.
  • [HKR21]. Jeffrey Hatley, Debanjana Kundu, and Anwesh Ray. Statistics for anticyclotomic Iwasawa invariants of elliptic curves. Preprint, 2021, arxiv 2106.01517.
  • [HMM06]. Jonathan Hillman, Daniel Matei, and Masanori Morishita. Pro-\(p\) link groups and \(p\)-homology groups. In Primes and knots, 121-136, Contemp. Math., 416. Amer. Math. Soc., Providence, RI, 2006, zbl 1155.57003, MR2276139.
  • [Hor87]. Kuniaki Horie. A note on basic Iwasawa \(\lambda \)-invariants of imaginary quadratic fields. Invent. Math. 88(1):31-38, 1987, DOI 10.1007/BF01405089, zbl 0585.12004, MR0877004.
  • [Hos20]. Jim Hoste. A note on Alexander polynomials of 2-bridge links. J. Knot Theory Ramifications 29(08):1971003, 7 pp., 2020, DOI 10.1142/S0218216519710032, zbl 1447.57004, MR4143690, arxiv 1907.03812.
  • [Iha86]. Yasutaka Ihara. On Galois representations arising from towers of coverings of \(\mathbb{P}^1\backslash\{0, 1,\infty\} \). Invent. Math. 86(3):427-459, 1986, DOI 10.1007/BF01389262, zbl 0585.14020, MR0860676.
  • [{I}wa73]. Kenkichi Iwasawa. On zl-extensions of algebraic number fields. Ann. of Math. (2) 98:246-326, 1973, DOI 10.2307/1970784, zbl 0285.12008, MR0349627.
  • [Joc94]. Naomi Jochnowitz. A p-adic conjecture about derivatives of L-series attached to modular forms, 239-239. Contemp. Math., 65. Amer. Math. Soc., Providence, RI, 1994, zbl 0869.11040, MR1279612.
  • [Kaw96]. Akio Kawauchi. A survey on knot theory. Birkhäuser, 1996, zbl 0861.57001, MR1417494.
  • [KLR22]. Debanjana Kundu, Antonio Lei, and Anwesh Ray. Arithmetic statistics and noncommutative Iwasawa theory. Doc. Math. 27:89-149, 2022, https://www.elibm.org/article/10012180, DOI 10.25537/dm.2022v27.89-149, zbl 07482152, MR4398607, arxiv 2109.13330.
  • [KM08]. Teruhisa Kadokami and Yasushi Mizusawa. Iwasawa type formula for covers of a link in a rational homology sphere. J. Knot Theory Ramifications 17(10):1199-1221, 2008, DOI 10.1142/S0218216508006580, zbl 1163.57004, MR2460171.
  • [KM13]. Teruhisa Kadokami and Yasushi Mizusawa. On the Iwasawa invariants of a link in the 3-sphere. Kyushu J. Math. 67(1):215-226, 2013, DOI 10.2206/kyushujm.67.215, zbl 1304.57017, MR3089003, arxiv 1204.4892.
  • [KR21a]. Debanjana Kundu and Anwesh Ray. Statistics for Iwasawa invariants of elliptic curves. Trans. Amer. Math. Soc. 374(11):7945-7965, 2021, DOI 10.1090/tran/8478, zbl 1484.11206, MR4328687, arxiv 2102.02411.
  • [KR21b]. Debanjana Kundu and Anwesh Ray. Statistics for Iwasawa invariants of elliptic curves, II. Preprint, 2021, arxiv 2106.12095.
  • [Law97]. C. Lawrence. Introduction to cyclotomic fields, 2. ed. Graduate Texts in Mathematics, 83. Springer, 1997, zbl 0966.11047, MR1421575.
  • [Lee00]. John M. Lee. Introduction to smooth manifolds. Graduate Texts in Mathematics, 218. Springer, 2000, zbl 1030.53001, MR1930091.
  • [{L}ic12]. W. B. Raymond Lickorish. An introduction to knot theory. Graduate Texts in Mathematics, 175. Springer, 1997, zbl 0886.57001, MR1472978.
  • [Maz63]. Barry Mazur. Remarks on the Alexander polynomial. Unpublished notes, 1963, https://www.maths.ed.ac.uk/~v1ranick/papers/mazur3.pdf.
  • [Mil57]. John Milnor. Isotopy of links. Algebraic geometry and topology, 280-306. Princeton University Press, 1957, zbl 0080.16901, MR0092150.
  • [Mil06]. James S. Milne. Arithmetic duality theorems, 2. ed. BookSurge, LLC, 2006, zbl 1127.14001, MR2261462.
  • [Min82]. Jerome Minkus. The branched cyclic coverings of 2 bridge knots and links. Mem. Amer. Math. Soc., 255. Amer. Math. Soc., 1982, zbl 0491.57005, MR0643587.
  • [MM82]. John P. Mayberry and Kunio Murasugi. Torsion-groups of abelian coverings of links. Trans. Amer. Math. Soc. 271(1):143-173, 1982, DOI 10.2307/1998756, zbl 0487.57001, MR0648083.
  • [Mor11]. Masanori Morishita. Knots and primes: an introduction to arithmetic topology. Springer, 2012, DOI 10.1007/978-1-4471-2158-9, zbl 1267.57001, MR2905431.
  • [Ray21]. Anwesh Ray. Arithmetic statistics and diophantine stability for elliptic curves. Preprint, 2021, arxiv 2109.00830.
  • [RS21]. Anwesh Ray and R. Sujatha. Arithmetic statistics for the fine Selmer group in Iwasawa theory. Preprint, 2021, arxiv 2112.13335.
  • [San93]. Jonathan W. Sands. On the non-triviality of the basic Iwasawa \(\lambda \)-invariant for an infinitude of imaginary quadratic fields. Acta Arith. 65(3):243-248, 1993, DOI 10.4064/aa-65-3-243-248, zbl 0789.11061, MR1254959.
  • [Ste07]. William Stein. Sage mathematics software, 2007, http://www. sagemath. org/.
  • [Tul81]. Randy Tuler. On the linking number of a 2-bridge link. Bull. London Math. Soc. 13(6):540-544, 1981, DOI 10.1112/blms/13.6.540, zbl 0446.57004, MR0634596.
  • [Uek17]. Jun Ueki. On the Iwasawa invariants for links and Kida's formula. Internat. J. Math. 28(06):1750035, 30 pp., 2017, DOI 10.1142/S0129167X17500355, zbl 1375.57004, MR3663789, arxiv 1605.09036.
  • [VH96]. Helmut Völklein. Groups as Galois groups: an introduction. Cambridge Studies in Advanced Mathematics, 53. Cambridge University Press, 1996, zbl 0868.12003, MR1405612.


Dion, Cedric
Département de Mathématiques et de Statistique, Université Laval, Pavillion Alexandre-Vachon, 1045 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
Ray, Anwesh
Department of Mathematics, University of British Columbia, Vancouver BC, V6T 1Z2, Canada