Herscovich, Estanislao; Li, Ziling

Gerstenhaber structure on Hochschild cohomology of the Fomin-Kirillov algebra on 3 generators

Doc. Math. 27, 1773-1804 (2022)
DOI: 10.25537/dm.2022v27.1773-1804
Communicated by Henning Krause

Summary

The goal of this article is to compute the Gerstenhaber bracket of the Hochschild cohomology of the Fomin-Kirillov algebra on three generators over a field of characteristic different from \(2\) and \(3\). This is in part based on a general method we introduce to easily compute the Gerstenhaber bracket between elements of \(\operatorname{HH}^0(A)\) and elements of \(\operatorname{HH}^n(A)\) for \(n \in \mathbb{N}_0\), the method by \textit{M. Suárez-Álvarez} [J. Pure Appl. Algebra 221, No. 8, 1981--1998 (2017; Zbl 1392.16009)] to calculate the Gerstenhaber bracket between elements of \(\operatorname{HH}^1(A)\) and elements of \(\operatorname{HH}^n(A)\) for any \(n \in \mathbb{N}_0 \), as well as an elementary result that allows to compute the remaining brackets from the previous ones. We also show that the Gerstenhaber bracket of \(\operatorname{HH}^{\bullet}(A)\) is not induced by any Batalin-Vilkovisky generator.

Mathematics Subject Classification

16E40, 18G10, 16S37

Keywords/Phrases

Fomin-Kirillov algebra, Hochschild cohomology, Gerstenhaber bracket

References

  • 1. Anatol N. Kirillov; Sergey Fomin, Quadratic algebras, Dunkl elements, and Schubert calculus. In: Progr. Math., 172. Birkhäuser Boston, Boston, MA, Advances in geometry; zbl 0940.05070; MR1667680.
  • 2. Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2), 78, 267-288 (1963); DOI 10.2307/1970343; zbl 0131.27302; MR161898.
  • 3. Ziling Li; Estanislao Herscovich, Hochschild and cyclic (co)homology of the Fomin-Kirillov algebra on \(3\) generators (2021); arxiv 2112.01201.
  • 4. Hans-Jürgen Schneider; Alexander Milinski, Pointed indecomposable Hopf algebras over Coxeter groups. In: Contemp. Math., 267. Amer. Math. Soc., Providence, RI, New trends in Hopf algebra theory (1999); DOI 10.1090/conm/267/04272; zbl 0955.00038; MR1800714.
  • 5. Freddy Van Oystaeyen; Constantin Năstăsescu, Methods of graded rings, Lecture Notes in Mathematics, 1836. Springer, Berlin (2004); DOI 10.1007/b94904; zbl 1043.16017; MR2046303.
  • 6. Sarah Witherspoon; Cris Negron, An alternate approach to the Lie bracket on Hochschild cohomology, Homology Homotopy Appl., 18, 1, 265-285 (2016); DOI 10.4310/HHA.2016.v18.n1.a14; zbl 1353.16008; MR3498646; arxiv 1406.0036.
  • 7. Cristian Vay; Dragoş Ştefan, The cohomology ring of the 12-dimensional Fomin-Kirillov algebra, Adv. Math., 291, 584-620 (2016); DOI 10.1016/j.aim.2016.01.001; zbl 1366.18015; MR3459024; arxiv 1404.5101.
  • 8. Mariano Suárez-Álvarez, A little bit of extra functoriality for Ext and the computation of the Gerstenhaber bracket, J. Pure Appl. Algebra, 221, 8, 1981-1998 (2017); DOI 10.1016/j.jpaa.2016.10.015; zbl 1392.16009; MR3623179; arxiv 1604.06507.
  • 9. Yury Volkov, Gerstenhaber bracket on the Hochschild cohomology via an arbitrary resolution, Proc. Edinb. Math. Soc. (2), 62, 3, 817-836 (2019); DOI 10.1017/s0013091518000901; zbl 1461.16005; MR3974969; arxiv 1610.05741.
  • 10. Sarah J. Witherspoon, Hochschild cohomology for algebras, Graduate Studies in Mathematics, 204. American Mathematical Society, Providence, RI (2019); DOI 10.1090/gsm/204; zbl 1462.16002; MR3971234.

Affiliation

Herscovich, Estanislao
Institut Fourier, UMR 5582, Laboratoire de Mathématiques, Université Grenoble Alpes, CS 40700, 38058, Grenoble cedex 9, France
Li, Ziling
Institut Fourier, UMR 5582, Laboratoire de Mathématiques, Université Grenoble Alpes, CS 40700, 38058, Grenoble cedex 9, France

Downloads