Wiersema, Hanneke; Wuthrich, Christian

Integrality of twisted \(L\)-values of elliptic curves

Doc. Math. 27, 2041-2066 (2022)
DOI: 10.25537/dm.2022v27.2041-2066
Communicated by Otmar Venjakob

Summary

Under suitable, fairly weak hypotheses on an elliptic curve \(E/\mathbb{Q}\) and a primitive non-trivial Dirichlet character \(\chi \), we show that the algebraic \(L\)-value \(\mathscr{L}(E,\chi)\) at \(s=1\) is an algebraic integer. For instance, for semistable curves \(\mathscr{L}(E,\chi)\) is integral whenever \(E\) admits no isogenies defined over \(\mathbb{Q}\). Moreover we give examples illustrating that our hypotheses are necessary for integrality to hold.

Mathematics Subject Classification

11G40, 11G05, 11F67

Keywords/Phrases

elliptic curves, \(L\)-functions, modular symbols

References

  • 1. Agashe, A., Ribet, K., and Stein, W. A. The Manin constant. Pure Appl. Math. Q. 2, no. 2, 617-636 (2006), DOI 10.4310/PAMQ.2006.v2.n2.a11, zbl 1109.11032, MR2251484.
  • 2. Bosma, W., Cannon, J., and Playoust, C. The Magma algebra system. I. The user language. Computational algebra and number theory (London, 1993). J. Symbolic Comput. 24, 235-265 (1997), DOI 10.1006/jsco.1996.0125, zbl 0898.68039, MR1484478.
  • 3. Burns, D. and Castillo, D. On refined conjectures of Birch and Swinnerton-Dyer type for Hasse-Weil-Artin \(L\)-series. Preprint (2019), https://arxiv.org/abs/1909.03959.
  • 4. Česnavičius, K. The Manin constant in the semistable case. Compos. Math. 154, no. 9, 1889-1920 (2018), DOI 10.1112/S0010437X18007273, zbl 1430.11086, MR3867287, arxiv 1703.02951.
  • 5. Cremona, J. Algorithms for modular elliptic curves, second ed. Cambridge University Press, 1997, zbl 0872.14041, MR1628193.
  • 6. Diamond, F. and Shurman, J. A first course in modular forms. Graduate Texts in Mathematics, 228. Springer, 2005, zbl1062.11022, MR2112196.
  • 7. Dokchitser, V., Evans, R., and Wiersema, H. On a BSD-type formula for \(L\)-values of Artin twists of elliptic curves. J. Reine Angew. Math. 773, 199-230 (2021), DOI 10.1515/crelle-2020-0036, zbl 1485.11107, MR4237970, arxiv 1905.04282.
  • 8. Drinfeld, V. G. Two theorems on modular curves. Funkcional. Anal. I Priložen. 7, 83-84 (1973), zbl 0285.14006, MR0318157.
  • 9. Kenku, M. A. On the modular curves \(X_0(125), X_1(25)\) and \(X_1(49)\). J. London Math. Soc. (2) 23, no. 3, 415-427 (1981), DOI 10.1112/jlms/s2-23.3.415, zbl 0425.14006, MR0616546.
  • 10. Lorenzini, D. Torsion and Tamagawa numbers. Ann. Inst. Fourier (Grenoble) 61, no. 5, 1995-2037 (2012), DOI 10.5802/aif.2664, zbl 1283.11088, MR2961846.
  • 11. Manin, Y. I. Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat. 36, 19-66 (1972), zbl 0243.14008, MR0314846.
  • 12. Mazur, B., Tate, J., and Teitelbaum, J. On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84, no. 1, 1-48 (1986), DOI 10.1007/BF01388731, zbl 0699.14028, MR0830037.
  • 13. Rouse, J. and Zureick-Brown, D. Elliptic curves over \(\mathbb{Q}\) and 2-adic images of Galois. Res. Number Theory 1, Art. 12, 34 (2015), DOI 10.1007/s40993-015-0013-7, zbl 1397.11095, MR3500996, arxiv 1402.5997.
  • 14. Serre, J.-P. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15, no. 4, 259-331 (1972), DOI 10.1007/BF01405086, zbl 0235.14012, MR0387283.
  • 15. Stevens, G. Arithmetic on modular curves. Progress in Mathematics, 20. Birkhäuser Boston Inc., 1982, zbl 0529.10028, MR0670070.
  • 16. Stevens, G. Stickelberger elements and modular parametrizations of elliptic curves. Invent. Math. 98, no. 1, 75-106 (1989), DOI 10.1007/BF01388845, zbl 0697.14023, MR1010156.
  • 17. The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.1) (2020), https://www.sagemath.org.
  • 18. Wuthrich, C. Numerical modular symbols for elliptic curves. Math. Comp. 87, no. 313, 2393-2423 (2018), DOI 10.1090/mcom/3274, zbl 1453.11080, MR3802440, arxiv 1608.06423.
  • 19. Wuthrich, C. On the integrality of modular symbols and Kato's Euler system for elliptic curves. Doc. Math. 19, 381-402 (2014), https://www.elibm.org/article/10000333, zbl 1317.11060, MR3178244.

Affiliation

Wiersema, Hanneke
University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK
Wuthrich, Christian
University of Nottingham, School of Mathematical Sciences, University Park, Nottingham, NG7 2RD, UK

Downloads