Botero, Ana María; Burgos Gil, José Ignacio; Holmes, David; de Jong, Robin

Chern-Weil and Hilbert-Samuel formulae for singular Hermitian line bundles

Doc. Math. 27, 2563-2623 (2022)
DOI: 10.25537/dm.2022v27.2563-2623
Communicated by Mihai Păun

Summary

We show a Chern-Weil type statement and a Hilbert-Samuel formula for a large class of singular plurisubharmonic metrics on a line bundle over a smooth projective complex variety. For this we use the theory of b-divisors and the so-called multiplier ideal volume function. We apply our results to the line bundle of Siegel-Jacobi forms over the universal abelian variety endowed with its canonical invariant metric. This generalizes the results of [\textit{J. I. Burgos Gil} et al., Lond. Math. Soc. Lect. Note Ser. 427, 45--77 (2016; Zbl 1378.14027)] to higher degrees.

Mathematics Subject Classification

14C17, 14E99, 32U05, 32U25, 52A39

Keywords/Phrases

singular metrics, non-pluripolar products, Chern-Weil theory, b-divisors

References

  • 1. Avner Ash, David Mumford, Michael Rapoport, and Yung-Sheng Tai. Smooth compactifications of locally symmetric varieties. Second edition. With the collaboration of Peter Scholze. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2010, zbl 1209.14001, MR2590897.
  • 2. Eric Bedford and B. A. Taylor. A new capacity for plurisubharmonic functions. Acta Math. 149(1-2):1-40, 1982, DOI 10.1007/BF02392348, zbl 0547.32012, MR0674165.
  • 3. Eric Bedford and B. A. Taylor. Fine topology, Šilov boundary, and \((dd^c)^n\). J. Funct. Anal. 72(2):225-251, 1987, DOI 10.1016/0022-1236(87)90087-5, zbl 0677.31005, MR0886812.
  • 4. Owen Biesel, David Holmes, and Robin de Jong. Néron models and the height jump divisor. Trans. Amer. Math. Soc. 369(12):8685-8723, 2017, DOI 10.1090/tran/7087, zbl 1374.14023, MR3710640, arxiv 1412.8207.
  • 5. Ana María Botero. Intersection theory of toric \(b\)-divisors in toric varieties. J. Algebraic Geom. 28(2):291-338, 2019, DOI 10.1090/jag/721, zbl 1420.14117, MR3912060, arxiv 1701.03925.
  • 6. Ana María Botero and José Ignacio Burgos Gil. Toroidal b-divisors and Monge-Ampère measures. Math. Z. 300(1):579-637, 2022, DOI 10.1007/s00209-021-02789-5, zbl 07463802, MR4359537, arxiv 2004.14045.
  • 7. Ana María Botero, José Ignacio Burgos Gil, David Holmes, and Robin de Jong. Rings of Siegel-Jacobi forms of bounded relative index are not finitely generated. Preprint, 2022, arxiv 2203.14583.
  • 8. Sébastien Boucksom. Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. École Norm. Sup. (4) 37(1):45-76, 2004, DOI 10.1016/j.ansens.2003.04.002, zbl 1054.32010, MR2050205.
  • 9. Sébastien Boucksom, Tommaso de Fernex, and Charles Favre. The volume of an isolated singularity. Duke Math. J. 161(8):1455-1520, 2012, DOI 10.1215/00127094-1593317, zbl 1251.14026, MR2931273, arxiv 1011.2847.
  • 10. Sébastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi. Monge-Ampère equations in big cohomology classes. Acta Math. 205(2):199-262, 2010, DOI 10.1007/s11511-010-0054-7, zbl 1213.32025, MR2746347, arxiv 0812.3674.
  • 11. Sébastien Boucksom, Charles Favre, and Mattias Jonsson. Valuations and plurisubharmonic singularities. Publ. Res. Inst. Math. Sci. 44(2):449-494, 2008, DOI 10.2977/prims/1210167334, zbl 1146.32017, MR2426355, arxiv math/0702487.
  • 12. Sébastien Boucksom, Charles Favre, and Mattias Jonsson. Singular semipositive metrics in non-Archimedean geometry. J. Algebraic Geom. 25(1):77-139, 2016, DOI 10.1090/jag/656, zbl 1346.14065, MR3419957, arxiv 1201.0187.
  • 13. Patrick Brosnan and Gregory Pearlstein. Jumps in the Archimedean height. Duke Math. J. 168(10):1737-1842, 2019, DOI 10.1215/00127094-2018-0056, zbl 07108020, MR3983292, arxiv 1701.05527.
  • 14. José Ignacio Burgos Gil, David Holmes, and Robin de Jong. Singularities of the biextension metric for families of abelian varieties. Forum Math. Sigma 6:e12, 56 p., 2018, DOI 10.1017/fms.2018.13, zbl 1402.14032, MR3831971, arxiv 1604.00686.
  • 15. José Ignacio Burgos Gil, Jürg Kramer, and Ulf Kühn. The singularities of the invariant metric on the Jacobi line bundle. In Recent advances in Hodge theory, 45-77. London Math. Soc. Lecture Note Ser., 427. Cambridge Univ. Press, Cambridge, 2016.
  • 16. Nguyen-Bac Dang and Charles Favre. Intersection theory of nef b-divisor classes. Compos. Math. 158(7):1563-1594, 2022, DOI 10.1112/S0010437X22007515, zbl 1499.14014, MR4476829, arxiv 2007.04549.
  • 17. Nguyen-Bac Dang and Charles Favre. Spectral interpretations of dynamical degrees and applications. Ann. Math. (2) 194(1):299-359, 2021, DOI 10.4007/annals.2021.194.1.5, zbl 07582364, MR4276288, arxiv 2006.10262.
  • 18. Tamás Darvas and Mingchen Xia. The closures of test configurations and algebraic singularity types. Adv. Math. 397:108198, 56 p., 2022, DOI 10.1016/j.aim.2022.108198, zbl 1487.32132, MR4366232, arxiv 2003.04818.
  • 19. Tamás Darvas and Mingchen Xia. The volume of pseudoeffective line bundles and partial equilibrium. Preprint, 2021, arxiv 2112.03827.
  • 20. Jean-Pierre Demailly. Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1(3):361-409, 1992, zbl 0777.32016, MR1158622.
  • 21. Jean-Pierre Demailly. Singular Hermitian metrics on positive line bundles. In Complex algebraic varieties (Bayreuth, 1990), 87-104. Lecture Notes in Math., 1507. Springer, Berlin, 1992, zbl 0784.32024, MR1178721.
  • 22. Jean-Pierre Demailly. Analytic methods in algebraic geometry. Surveys of Modern Mathematics, 1. International Press, Somerville, MA; Higher Education Press, Beijing, 2012, zbl 1271.14001, MR2978333.
  • 23. Jean-Pierre Demailly and János Kollár. Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. (4) 34(4):525-556, 2001, DOI 10.1016/S0012-9593(01)01069-2, zbl 0994.32021, MR1852009, arxiv math/9910118.
  • 24. Jean-Pierre Demailly and Mihai Paun. Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. of Math. (2) 159(3):1247-1274, 2004, DOI 10.4007/annals.2004.159.1247, zbl 1064.32019, MR2113021, arxiv math/0105176.
  • 25. Martin Eichler and Don Zagier. On the theory of Jacobi forms. Birkhäuser, Boston, MA, 1985, zbl 0554.10018, MR0781735.
  • 26. Gerd Faltings and Ching-Li Chai. Degeneration of abelian varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 22. Springer, Berlin, 1990, DOI 10.1007/978-3-662-02632-8, zbl 0744.14031, MR1083353.
  • 27. Richard Hain. Normal functions and the geometry of moduli spaces of curves. In Handbook of moduli. Vol. I, 527-578. Adv. Lect. Math. (ALM), 24. International Press, Somerville, MA, 2013, zbl 1322.14049, MR3184171, arxiv 1102.4031.
  • 28. Richard Hain and David Reed. On the Arakelov geometry of moduli spaces of curves. J. Differential Geom. 67(2):195-228, 2004, DOI 10.4310/jdg/1102536200, zbl 1118.14029, MR2153077, arxiv math/0211097.
  • 29. Dano Kim. \(L^2\) extension of adjoint line bundle sections. Ann. Inst. Fourier (Grenoble) 60(4):1435-1477, 2010, DOI 10.5802/aif.2560, zbl 1207.32011, MR2722247, arxiv 0802.3189.
  • 30. Dano Kim and Hoseob Seo. Jumping numbers of analytic multiplier ideals. With an appendix by Sébastien Boucksom. Ann. Polon. Math. 124(3):257-280, 2020, DOI 10.4064/ap190529-19-12, zbl 1452.32037, MR4085107, arxiv 1908.02474.
  • 31. Kai-Wen Lan. Toroidal compactifications of PEL-type Kuga families. Algebra Number Theory 6(5):885-966, 2012, DOI 10.2140/ant.2012.6.885, zbl 1302.11041, MR2968629.
  • 32. Robert Lazarsfeld. Positivity in algebraic geometry. I and II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge [Results in Mathematics and Related Areas. 3rd Series], 48 and 49. Springer, Berlin, 2004. DOI 10.1007/978-3-642-18808-4(I), DOI 10.1007/978-3-642-18810-7(II), zbl 1093.14501(I), zbl 1066.14021(II), MR2095471(I), MR2095472(II).
  • 33. Laurent Moret-Bailly. Métriques permises. Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). Astérisque 127:29-87, 1985, zbl 1182.11028, MR0801918.
  • 34. David Mumford. Lectures on curves on an algebraic surface. With a section by G. M. Bergman. Annals of Mathematics Studies, 59. Princeton University Press, Princeton, NJ,1966, DOI 10.1515/9781400882069, zbl 0187.42701, MR0209285.
  • 35. David Mumford. Hirzebruch's proportionality theorem in the noncompact case. Invent. Math. 42:239-272, 1977, DOI 10.1007/BF01389790, zbl 0365.14012, MR0471627.
  • 36. Junjiro Noguchi and Takushiro Ochiai. Geometric function theory in several complex variables. Translated from the Japanese by Noguchi. Translations of Mathematical Monographs, 80. American Mathematical Society, Providence, RI, 1990, zbl 0713.32001, MR1084378.
  • 37. Gregory Pearlstein and Chris Peters. Differential geometry of the mixed Hodge metric. Comm. Anal. Geom. 27(3):671-742, 2019, DOI 10.4310/CAG.2019.v27.n3.a6, zbl 1429.32045, MR4003007, arxiv 1407.4082.
  • 38. Alexander Rashkovskii. Analytic approximations of plurisubharmonic singularities. Math. Z. 275(3-4):1217-1238, 2013, DOI 10.1007/s00209-013-1179-0, zbl 1288.32047, MR3127056, arxiv 0910.2137.
  • 39. Julius Ross and David Witt Nyström. Analytic test configurations and geodesic rays. J. Symplectic Geom. 12(1):125-169, 2014, DOI 10.4310/JSG.2014.v12.n1.a5, zbl 1300.32021, MR3194078, arxiv 1101.1612.
  • 40. Wilfried Schmid. Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22:211-319, 1973, DOI 10.1007/BF01389674, zbl 0278.14003, MR0382272.
  • 41. Vyacheslav V. Shokurov. Prelimiting flips. Translated from Mat. Inst. Steklova, 240 (Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry), 82-219, 2003. Proc. Steklov Inst. Math. 240:75-213, 2003, zbl 1082.14019, MR1993750.

Affiliation

Botero, Ana María
Faculty of Mathematics, University of Regensburg, Germany
Burgos Gil, José Ignacio
ICMAT (Instituto de Ciencias Matemáticas), Madrid, Spain
Holmes, David
Mathematical Institute, University of Leiden, The Netherlands
de Jong, Robin
Mathematical Institute, University of Leiden, The Netherlands

Downloads